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Introduction: a Cluster Structure in Nuclei
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Motivation: Hoyle State and Efimov State in 12C
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believed to possess a rather unusual structure, where the dominant degrees of freedom
are those of a-particle clusters rather than nucleons. An understanding of the properties
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Motivation: Hoyle State and Efimov State in 2C
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ENERGY LEVELS ARISING FROM RESONANT TWO-BODY FORCES
IN A THREE-BODY SYSTEM
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Resonant two-hodv forces are shown to give rise Lo a series of levels in three-particle systems. The
number of SU?B levels may be very large. Posgibility of the existence of such levels in systems of three
a-particles (*“C nucleus) and three nucleons (‘311} is discussed.

Giant trimers true to scale

Quantum mechanics predicts an infinite series of loosely bound states of three bosons, and the size of these
trimers should scale with a factor of 22.7. This general result seems to be confirmed now in an experiment with

an ultracold gas of potassium atoms.
MATURE PHYSICS | VOL 5 | AUGUST 2009 | www.nature.com/naturephysics
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Evidence for Efimov quantum states in an
ultracold gas of caesium atoms
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Decay modes of the Hoyle state in '*C
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ARTICLE INFO ABSTRACT

Article history: Recent experimental results give an upper limit less than 0.043% (95% C.L.) to the direct decay of
Received 12 November 2017 the Hoyle state into 3 respect to the sequential decay into ®Be + «. We performed one and two-
R“e"’e‘; '"6":‘”5“1 '°"‘(" ‘BF ebruary 2018 dimensional tunneling calculations to estimate such a ratio and found it to be more than one order of
Adcepred 16 febinary 20} magnitude smaller than experiment depending on the range of the nuclear force. This is within high

Available online xxxx

Editor: J-P. Blaizot statistics experimental capabilities. Our results can also be tested by measuring the decay modes of

high excitation energy states of '2C where the ratio of direct to sequential decay might reach 10% at
E*('2C) = 10.3 MeV. The link between a Bose Einstein Condensate (BEC) and the direct decay of the

Keywords:

Hoyle state Hoyle state is also addressed. We discuss a hypothetical ‘Efimov state’ at E*('?C) = 7.458 MeV, which

Efimov state would mainly sequentially decay with 3« of equal energies: a counterintuitive result of tunneling. Such a

Bose Einstein condensate state, if it would exist, is at least 8 orders of magnitude less probable than the Hoyle's, thus below the

Tunneling sensitivity of recent and past experiments,

?":_e‘_c:ﬂff"‘zuw © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
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ARTICLE INFO ABSTRACT

Article history: The SLi + °Li — 3« reaction has been measured in a kinematically complete experiment at 3.1 MeV
Received 16 June 2015 of beam energy. The reaction mainly proceeds via intermediate 5Be states. The interaction between any
Received in revised form 16 August 2015 two of the three « particles provides events with one, two or three ®Be interfering levels, with strong
Accepted 23 August 2015 enhancement in the w-« coincidence yield. Evidence of three ®Be levels within the same 3« event

Available online 28 August 2015

Editor: V. Metag suggests that one « particle is exchanged between the other two. This is a condition for Efimov states

to occur in nuclei, for which no observation exists yet. The hyperspherical formalism for the low-energy

ohman hadic cmacbloc hae hace ccaallad cn cafas cce abhha Vo wancelala cnccalaciom

While we are probably at the limit of the experimental sensitivity,
higher-statistics experiments might be performed, or different
strategies might be explored.



3a Resonances in Heavy lon Collisions

We analyzed the 70649Zn(64Ni)+70(64)Zn(54Ni)
reactions at E/A=35 MeV/nucleon data from
the experiments performed at the Cyclotron

Institute, Texas A&M University using the =
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Method

In the N equal mass body system,

If the two objects have the same mass m, p = %-m and
P’
Fips = —
s 241
_ 1(p1—p2)*
4 2/t

For a three body system with equal masses, we can
define the excitation eneregv £* as:

3
> E;-Q
i=1,7>1

where E;; 1s the relative kinetic energy of two particles,
and Q i1s the O-value. Note that the umportant ingredient
entering Eq. (1) are the relative kinetic energies; since we
have three mdistinguishable bosons. we analyze the Ej;
distribution by cataloguing for each event the smallest re-
lative kinetic energy. £}, the middle relative kinetic en-
ergy. El’.‘fid-. and the largest relative kinetic energy, E,.Ljaf-.

(L

i: ~(E; +Ef}) -

i=1, j>i

(2)

'..-JI ]

where E,-)f and E,-’;- are the relative kinetic energy of 2« in the
X and Y directions (Z is the beam axis direction).

P2
Eyj = 2
> 2
A a5
4 2L

where P; and P; are the momenta of the i and j particles

N
Y By = NELpl
; 1 2/
=1
= N Zz lpl.
2 2m
= (E* +Q).

In this work, we reconstruct the E*=7.458
MeV (ES) and E*=7.654 MeV (HS) of the
12C from 3a with Q=-7.275 MeV.
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FIG. 1. Selected events from "*YZn(**Ni) + "*"Zn(**Ni) at E /A = 35 MeV /nucleon with & multiplicity equal to three. Relative kinetic-
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kinetic encrgy of 2as. The solid black circles represent data from real events, the red open circles are from mixing events, and the green open
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Ej‘;“": w (MeV) h/T (fm/c) E;';"“: u (MeV) h/T" (fm/c) B i (MeV) /T (fm/c)
Peak | 0.088 + 0.001 1192 + 66 0.08 + 0.02 1089 + 288 0.08 £ 004 984 + 540
Peak 2 3.05 + 0.01 142 £ 0.3
Peak 3 17.0 + 0.1 208 + 0.04 229 + 0.3 1.1 + 0.1

Peak 4 83 1+ 3 28+ 1.0 106 £ 1 0.95 = 0.04 124.1 = 0.9 0.70 £ 0.02
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In order to strengthen the above results, we derived observables which give the probability of 2C decay into a
particular mode (say the 3as relative kinetic energies are equal (DDE) or two energies are equal and the third one is
twice the sum of the first two (LD)) with respect to SD. These probabilities have been discussed experimentally using
different techniques [8-16]; thus, it is especially interesting to compare our results in a medium with conventional
approaches. Notice that the effects in a medium might be present in Ref. [9] and this might explain the discrepancies
from conventional approaches [8-16]. We define the decay probability as Eq.(3):

>i;[Yr(DDE or LD, Eij) — Yar (DDE or LD, Eyj))]
> i;(YR(SD, Esj) — Yar(SD, Egj)]

[1E*.E) = (3)

where the sum is extended over all relative kinetic energies corresponding to a '2C level with excitation energy E*
from Eq.(1) and variance §E, which we will vary to the smallest values allowed by the statistics. The Yr(SD, E;;)
and Y ;(SD, E;;) in the denominator are obtained by fixing the smallest relative kinetic energy to the ®Be, o + 6E/3
for the real (R) and mixing (M) events, respectively. The yields of DDE or LD are obtained by opportunely choosing
the relative kinetic energies in the numerator. For example, the DDE case is obtained by choosing three equal relative
kinetic energies (within dE/3 for each one). For a fixed excitation energy, we can estimate Eq.(3) from the data by
changing JE in order to derive the limiting value of the ratio compatible with the experimental sensitivity.
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The parameter do (0E—0) gives the smallest possible physical value of the ratios or the experimental error, while
the largest value d., (dE—o0) is connected to the available phase space [33]. The fit values of d, are reported in
Table II and are compared to the data in literature. Since Ref. [9] might contain effects from within a medium as
in our case, we argue that the difference is due to not properly subtracting the mixing events when calculating the
ratios, as in Eq.(3). Another possibility is the contribution of the ES due to the experimental sensitivity. We can see
that the LD contribution of the ES is compatible with zero, which is consistent with the definition of the ES. For the
larger excitation energies considered here, the ratios are negative for the DDE case (see Fig. 4(b)) and compatible

with zero for the LD case (see Fig. 4(d)).
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Summary

In this work, we have discussed energy levels of ®Be and 2C in hot nuclear matter. We found that the DDE
and LD decay modes are strongly depleted. Thus the decay probability is mainly determined by the ®Be formation
probability in !2C. Depending on the excitation energy of '2C, ®Be might be formed, not only in the ground state,
but also in excited states as well. We confirm the finding of Ref. [34] that some decay modes are dominated by 8Be
levels hit more than once. A special case is the ES when the relative energies of 3as are consistent with the R]:’n—:‘g_s_.
a signature of a strongly resonating Boson gas or an Efimov state, consistent with observations in atomic systems
Ref. [26]. Some DDE and LD decay modes might be observed at very large excitation energies and these will be
discussed further in a following work together with the question of BEC. We have discussed a new method to obtain
the correlation function by using the transverse relative kinetic energy instead of the mixing events technique. This
reduces the uncertainty due to the detector finite granularity, but ambiguities still remain especially on the question
if there might be a resonance in '>C below the Hoyle state [31, 35]. This ‘resonance’ might be due to the 3as going
through the SBegAgA resonance at the same time, a mechanism introduced for Efimov states [24-27, 35]. It might be
an effect which occurs in hot nuclear matter only and not necessarily a new excited level in *2C which could be tested
in higher statistics experiments without in medium effects. A dedicated experiment with higher statistics and better
detector system, say for 4°Ca+%9Ca collisions around 40 MeV /nucleon, should shed further light on the properties of
the resonating bosons in hot matter.

We’re thinking ...

Searching for states analogous to the 2C Hoyle state in heavier
nuclei using the thick target inverse kinematics technique

M. Barbui, K. Hagel, J. Gauthier, S. Wuenschel, R. Wada, V. Z. Goldberg, R. T. deSouza, 5. Hudan, D. Fang, X.-G.
Cao, and J. B. Natowitz
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