Angular Distribution studies of Neutron-Rich Projectile-like Fragments from ⁸⁶Kr -induced peripheral collisions at 15 MeV/nucleon

O.Fasoula¹, G.A. Souliotis¹, Y.K. Kwon², K. Tshoo², A. Bonasera^{3,4}, M. Veselsky⁵

 ¹Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens
 ²The Rare Isotope Science Project (RISP), Institute for Basic Science, Daejeon 305-811, Korea
 ³Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
 ⁴Laboratori Nazionali del Sud, INFN, via Santa Sofia 62, I-95123 Catania, Italy
 ⁵Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

> 5th Hellenic Institute Of Nuclear Physics Workshop 12-13 April 2019, Thessaloniki

Introduction

Explanation of the models

Comparison of our calculations with experimental results of our group

Summary and conclusions

The Nuclear Landscape

281 nuclei are stable

- ✤ ~ 3300 short-lived (radioactive) nuclei synthesized to date
- Large region of neutron-rich nuclei is still unexplored (~4000 nuclei)

Peripheral Collisions, Deep Inelastic Transfer (DIT)*

DIT : Phenomenological model (Monte Carlo implementation)

- Formation of a di-nuclear configuration
- Exchange of nucleons through a "window" formed by the superimposition of the nuclear potentials in the neck region

*DIT: L. Tassan-Got, C. Stephan, Nucl. Phys. A 524, 121 (1991)

Microscopic Calculations: Constrained Molecular Dynamics (CoMD)*

CoMD: Quantum Molecular Dynamics model (Semiclassical)
Nucleons are considered as Gaussian wavepackets
Pauli principle imposed via a phase-space constraint
N-N effective interaction (Skyrme-type with K=200 MeV/fm³)
Several forms of N-N symmetry potential Vsym (ρ)
Fragment recognition algorithm (Rmin = 3.0 fm)
Monte Carlo implementation. Description of the dynamical stage for t = 0-800 fm/c

Nuclear De-excitation Mechanisms

Comparison: ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn, ¹²⁴Sn

¹²⁴Sn: N/Z=1.48

Dots: Exp. Data ⁸⁶Kr+¹²⁴Sn

- : DIT
 - : CoMD (standard)
 - : N-def stable isotope
 - : N-rich stable isotope

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

Comparison: ⁸⁶Kr /⁹²Kr (15 MeV/nucleon) + ²³⁸U, ¹²⁴Sn

²³⁸U: N/Z=1.59

Dots: Exp. Data ⁸⁶Kr+¹²⁴Sn : ⁸⁶Kr (DIT) : ⁹²Kr (DIT) : N-def stable isotope : N-rich stable isotope

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

Comparison: ⁸⁶Kr /⁹²Kr (15 MeV/nucleon) + ²³⁸U

Black Dots : Stable Nuclei Red Circles : DIT Green Line : n-drip line* Purple line : r-process path*

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

SMM: Statistical Multifragmentation Model:
 A. Botvina et al., Phys. Rev. C, 65, 044610, (2002);
 Nucl. Phys. A 507, 649, (1990)

*P. Moller, J. R. Nix, K. L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).

Angular Distribution: ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn, (Z:36,38)

Squares: Exp. Data ⁸⁶Kr+¹²⁴Sn DIT CoMD (standard)

: CoMD (pairing term)

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

Angular Distribution: ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn, (Z:35,34)

Squares: Exp. Data ⁸⁶Kr+¹²⁴Sn : DIT : CoMD (standard) : CoMD (pairing term)

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

Angular Distribution: ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn, (Z:33,32)

Squares: Exp. Data ⁸⁶Kr+¹²⁴Sn : DIT : CoMD (standard) : CoMD (pairing term)

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

Summary and Conclusions

- Systematic study of production cross-sections of neutron-rich rare isotopes in peripheral reactions below the Fermi energy in mass range A ~40-60
- Systematic study of angular distributions
- Explore possible sensitivity of calculations to the effective N-N potential and the equation of state
- Satisfactory agreement with experimental results of our group
- Predictions of extremely neutron rich isotopes toward r-process path

Plans for future work:

- Further theoretical investigation with CoMD, DIT, SMM and improvement of our models
- Experimental work with ⁷⁰Zn stable beam of 15 MeV/nucleon at LNS Catania with the MAGNEX spectrometer

Acknowledgements

Special thanks to:

S. Yennello, Texas A&M, U.S.A F. Cappuzzello, LNS Catania, Italy A. Pakou, University of Ioannina, Greece A. Botvina, FIAS, Frankfurt, Germany N. Nikolis, University of Ioannina, Greece

EXTRA STUFF

MARS Recoil Separator and Setup for Heavy Rare Isotope Studies*

Rare isotope production study: Why?

Investigation of very neutron rich nuclei offers:

- Understanding of the nuclear structure with increasing N/Z
- Insight in nucleosynthesis processes (i.e. rapid neutron capture process, r-process)
- Reactions induced by n-rich nuclei provide information on:
 - isospin dependence N-N interaction
 - equation of state of asymmetric nuclear matter.

Production of very neutron-rich nuclides is a central issue in current and future rare isotope beam facilities. (GSI, Ganil, NSCL/FRIB, TRIUMF, RISP/Korea etc.)

Comparison: ⁸⁶Kr (15 MeV/nucleon) + ⁶⁴Ni, ⁶⁴Ni

⁶⁴Ni: N/Z=1.29

Dots: Exp. Data ⁸⁶Kr+⁶⁴Ni

- : DIT
 - : CoMD (standard)
- : N-def stable isotope
 - : N-rich stable isotope

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

Calculations (prod. rates) : ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn, ¹²⁴Sn

Dots	: Stable Nuclei
Black	: Experimental data
Yellow	: DIT
Red	: CoMD (standard)

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

SMM: Statistical Multifragmentation Model:
 A. Botvina et al., Phys. Rev. C, 65, 044610, (2002);
 Nucl. Phys. A 507, 649, (1990)

35

N

Atomic Number

20

 $[exp] {}^{86}\mathrm{Kr}(15\mathrm{MeV/nucleon}) + {}^{124}\mathrm{Sn}$

n-dripline

0.1-1 µb

1-10 µb

0.1-1 mb

1-10 mb

○ >10 mb

10-100 µb

Angular Distribution: ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn, (Z:30,28)

Squares: Exp. Data ⁸⁶Kr+¹²⁴Sn : DIT : CoMD (standard) : CoMD (pairing torm)

: CoMD (pairing term)

Experimental data: G.A. Souliotis et al., Texas A&M, Phys. Rev. C, 84, 064607,(2011)

DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991)

CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)