Resolution Study of a γ-Camera System for SPECT at Preclinical Level

Despoina Zarketan

L. Koutsantonis, M.-E. Tomazinaki, E. Stiliaris

Department of Physics & Medical School

National & Kapodistrian University of Athens, Athens, Greece

HINPw5 5th Hellenic Institute of Nuclear Physics Workshop 12-13 April 2019, Aristotle University of Thessaloniki

Introduction

- Single Photon Emission Computed Tomography (SPECT) at :
- ✓ Clinical Level
- Preclinical Level

Introduction

Evolution of the Energy and Spatial Resolution for Clinical γ-Camera Systems

Outline of the Presentation

- Position Sensitive Photomultiplier Tube (PSPMT)
 - Operating Principle
 - **PSPMT Characterization with LED pulses**
- > Small Field γ -Camera System
 - Collimator Scintillation Crystal
 - Planar Projections of a Phantom with ^{99m}Tc Capillaries
 - Correction Algorithm for Spatial Distortions
- $\succ \gamma$ -Camera System Check
 - Tomographic Reconstruction of a Complicated Geometrical Phantom
 - Small Mouse Imaging

Conclusions

The crossed-wired anodes that give 16 X and 16 Y different signals

PSPMT characterization with LED pulses

PSPMT characterization with LED pulses

Accumulated anodic charge for applied Pulse Durations (left) and High Voltages (right)

D. Zarketan, MSc Thesis (2019), University of Athens

PSPMT characterization with LED pulses

PSPMT characterization with LED pulses

$$\frac{\Delta Q}{Q} = \frac{a}{\sqrt{T}+b}$$

PSPMT characterization with LED pulses

<u>The Charge as an</u> <u>exponential function</u> <u>of the supplied H.V.</u>

Q=a × exp[c(H.V.)]+b

a=2.83 ± 0.7 **b**= -210.6 ± 31.10 **c**= 59.6×10⁻⁴ ± 2.0×10⁻⁴

PSPMT characterization with LED pulses

Intrinsic Charge Resolution

Only 2% optimization for 300V increase (from 800V to 1100V) in the dynamic range of the PSPMT.

Small Field γ-Camera System

Collimator and Scintillation Crystal

The parallel-hole Pb collimator (hexagonal type)

4mm CsI(Tl) pixelated scintillation crystal

Pixel size: 1mm × 1mm separated by 0.1 mm epoxy

D. Zarketan, MSc Thesis (2019), University of Athens

Small Field y-Camera

Correction Algorithm for Spatial Distortions

D. Zarketan, MSc Thesis (2019), University of Athens

Small Field γ-Camera

Correction Algorithm for Spatial Distortions

Uncorrected Image

D. Thanasas et al., IEEE NSS-MIC (2008), 3711-3714

Tomographic Reconstruction of a complicated geometrical phantom

Gel-Phantom with ^{99m}Tc volumes 24 Projections 15⁰ step (0⁰... 360⁰)

Tomographic Reconstruction of a complicated geometrical phantom

3D Reconstruction Using ART

Iso-Surface Plot (20% contour)

Conclusion

Volumes with V > 0.1 cm³ at specific activity 0.25mCi/cm³ are easily detectable.

Imaging Specific Organs of a Targeted Small Mouse

Mice were injected with...

• / ^{99m}Tc-DTPA, used in radioisotope renography to evaluate function kidneys

• ^{99m}Tc-MAA (Macro-Aggregates of Albumin), used in lungs imaging

Imaging Specific Organs of a Targeted Small Mouse

The labelled

mouse

Our SPECT LAB

Imaging Specific Organs of a Targeted Small Mouse

buse's lungs imaging with the small field γ -Camera

Mouse's kidneys imaging with the small field γ -Camera

Imaging Specific Organs of a Targeted Small Mouse

SPECT-CT fusion for the mouse's spots of interest

L. Koutsantonis, PhD Thesis (2019), The Cyprus Institute, Nicosia, Cyprus

Conclusions

- Small field γ-Camera Systems equipped with modern PSPMTs can reach a spatial resolution better than 2mm at planar imaging.
 - Intrinsic PSPMT spatial resolution <150μm
 - The intrinsic PSPMT spatial and energy resolution depends more on the lightness of the scintillation crystal and less on the PSPMT high voltage.
 - γ-Camera System resolution $<\sigma_X> = (1.49 \pm 0.08)$ mm & $<\sigma_Y> = (1.58 \pm 0.18)$ mm
- Planar projections can be corrected even with an 1D correction algorithm, although for more complicated images a 2D is needed.
- **/Volumes with V > 0.1 cm³ at specific activity 0.25 \text{ mCi/cm}^3 are easily detectable.**

Further studies need to be done, for even better detectability of labelled targets at clinical level.

THANK YOU...!!!