Chirality and wobbling: new achievements and perspectives

Three successful experiments

RITU + JUROGAM II - 2016 (B. F. Lv)
${ }^{135} \mathrm{Nd},{ }^{136} \mathrm{Nd},{ }^{137} \mathrm{Nd}$ - multiple chiral bands
${ }^{135} \mathrm{Nd}$ - Wobbling at low spin NO
${ }^{136} \mathrm{Nd}$ - Wobbling 2qp at high spin YES (F.Q. Chen)

GALILEO + EUCLIDES + N WALL - 2017 (S. Guo) ${ }^{130} \mathrm{Ba}$ - Wobbling 2qp YES (Q. B. Chen, Y. X. Liu)
${ }^{131} \mathrm{Ba}$ - chiral bands+octupole correlations

MARA + JUROGAM III - 2019 (K. K. Zheng)
${ }^{119} \mathrm{Cs}$ - electric revolving chirality
${ }^{119} \mathrm{Cs}$ - prolate-oblate shape coexistence
${ }^{119} \mathrm{Ba}$ - neutron 1-qp configurations
${ }^{118} \mathrm{Cs}$ - isomers at the proton-drip line

JUROGAM II + RITU, ${ }^{40} \mathrm{Ar}+{ }^{100} \mathrm{Mo} \rightarrow \mathrm{Nd}$ 20 pnA (1 week, October 2016)

MARA + JUROGAM 3,

${ }^{64} \mathrm{Zn}+{ }^{58} \mathrm{Ni} \rightarrow \mathrm{Cs}, \mathrm{Ba}, \mathrm{LA}$ (3 days, May 2019)

MARA

JUROGAM 3

GALILEO + EUCLIDES + n wall,

 ${ }^{13} \mathrm{C}+{ }^{122} \mathrm{Sn} \rightarrow \mathrm{Ba}(1$ week, March 2017)

Chirality in odd-even nuclei:

 3-qp configurations

Chirality in even-even nuclei: 4-qp configurations

Y. X. Luo, et al. - PLB 670 (2009) 307
${ }^{110,112} \mathrm{Ru}$ - Many of the experimental findings can be explained by microscopic calculations that combine the TAC mean-field with RPA but a simple geometrical explanation is not apparent.
The lowest configuration is obtained by exciting a neutron from the highest
$\mathrm{h}_{11 / 2}$ level to the low-lying mixed $\mathrm{d}_{5 / 2}-\mathrm{g}_{7 / 2}$ levels.
The tendency to chirality comes about from the interplay of all the neutrons in the open shell, and we could not find a simple partition.

No chiral partner observed!
No interband transtions
No chiral partner observed! observed!

Five chiral doublets in one nucleus: apotheosis of chirality in ${ }^{136} \mathrm{Nd}$

CP, B.F. Lv, et al.
PRC 97 (2018) 041304(R)

Breaking two pairs of nucleons and placing them in orbitals with orthogonal angular momenta lead to much more combinations than in odd-odd nuclei.
The challenge is to identify the very weakly populated 4-qp bands!

Ultimate chirality: clear evidence in even-even nuclei

${ }^{136} \mathrm{Nd}$ - D2 chiral doublet

$\pi h^{3}(d g)^{-1} \otimes \vee h^{-1}(s d)^{-1}(3$ particles +3 holes $)$

Numerical details

${ }^{136} \mathrm{Nd}$ - chiral doublet D5 (I=2\%)

- Configuration: $\pi\left(\mathbf{1 h}_{11 / 2}\right)^{2}\left(\mathbf{g}_{7 / 2}\right)^{-2} v\left(1 h_{11 / 2}\right)^{-1}\left(\mathbf{1 f}_{7 / 2}\right)^{1}$
- Deformation: $\left(\beta=0.26, \gamma=23.0^{\circ}\right)$
- Irr. MOI: $\mathfrak{J}=40 \mathrm{MeV}$
- Coriolis attenuation factor: 0.93

Multiple chiral doublets in four- j shells particle rotor model: Five possible chiral doublets in ${ }_{60}^{136} \mathrm{Nd}_{76}$
Q.B. Chen ${ }^{\mathrm{a}}$, B.F. Lv $^{\mathrm{b}}$, C.M. Petrache ${ }^{\mathrm{b}}$, J. Meng ${ }^{\text {c,de, }, *}$

Physics Letters B 782 (2018) 744-749

Evidence for pseudospin-chiral quartet bands in the presence of

 octupole correlationsS. Guo ${ }^{\text {a,b,* }, ~ C . M . ~ P e t r a c h e ~}{ }^{\text {c,*, }, ~ D . ~ M e n g o n i ~}{ }^{\text {d,e }}$, Y.H. Qiang ${ }^{\text {a }}$, Y.P. Wang ${ }^{f}$, Y.Y. Wang ${ }^{f}$, J. Meng ${ }^{f, g}$, Y.K. Wang ${ }^{f}$, S.Q. Zhang ${ }^{\text {f }}$, P.W. Zhao ${ }^{f}$, A. Astier ${ }^{\text {c }}$, J.G. Wang ${ }^{\text {a,b }}$, H.L. Fan ${ }^{\text {a }}$, E. Dupont ${ }^{\mathrm{c}}$, B.F. Lv $^{\mathrm{c}}$, D. Bazzacco ${ }^{\mathrm{d}, \mathrm{e}}$, A. Boso ${ }^{\text {d,e }}$, A. Goasduff ${ }^{\mathrm{d}, \mathrm{e}}$, F. Recchia ${ }^{\mathrm{d}, \mathrm{e}}$, D. Testov ${ }^{\text {d,e }}$, F. Galtarossa ${ }^{\text {h, }}$, G. Jaworski ${ }^{\text {h }}$, D.R. Napoli ${ }^{\text {h }}$, S. Riccetto ${ }^{\text {h }}$, M. Siciliano ${ }^{\text {h }}$, J.J. Valiente-Dobon ${ }^{\text {h }}$, M.L. Liu ${ }^{\text {a,b }}$, G.S. Li $^{\text {a,b }}$, X.H. Zhou ${ }^{\text {a,b }}$, Y.H. Zhang ${ }^{\mathrm{a}, \mathrm{b}}$, C. Andreoiu ${ }^{\mathrm{j}}$, F.H. Garcia ${ }^{j}$, K. Ortner ${ }^{j}$, K. Whitmore ${ }^{j}$, A. Ataç-Nyberg ${ }^{k}$, T. Bäck ${ }^{k}$, B. Cederwall ${ }^{k}$, E.A. Lawrie ${ }^{1, \mathrm{~m}}$, I. Kuti $^{\text {n }}$, D. Sohler ${ }^{\text {n }}$, T. Marchlewski ${ }^{\circ}$, J. Srebrny ${ }^{0}$, A. Tucholski ${ }^{0}$

Physics Letters B 807 (2020) 135572
Chiral bands

Chiral bands

${ }_{56}^{131} \mathrm{Ba}_{75}$

Chiral bands

Selection rules of electromagnetic

transitions for chirality-parity violation in atomic nuclei

Science Bulletin

Volume 65, Issue 23, 15 December 2020, Pages 2001-2006

New quantum numbers

Chiture \mathfrak{A}, similar to signature \mathfrak{R}

Chiplex $\mathcal{B}=\mathcal{A} \mathcal{P}$, similar to simplex $S=\mathcal{R}(\pi) \mathcal{P}$

Electric revolving chirality at the limits

New chiral bands in $A=130$ region

B.W. Xiong, Y.Y. Wang, ADNDT 125 (2018) 193: Nuclear chiral bands data tables

Oblate-prolate coexistence at the limits

Figure 11. Nilsson diagram for protons, $50 \leq \mathbf{Z} \leq 82\left(\varepsilon_{4}=\varepsilon_{2}^{2} / 6\right)$.

Wobbling outside of the A=160 mass region

$$
\begin{aligned}
& \text { - Iow-spin 1-qp bands: NO } \\
& \text { - high-spin 1,2-qp bands: YES }
\end{aligned}
$$

Wobbling bands \square theoretical predictions and calculations

1975, Bohr-Mottelson, Chapter 4, States with large $\mathrm{I}\left(\mathrm{I}^{2} \gg \mathrm{I}_{2}{ }^{2}+\mathrm{I}_{3}{ }^{2}\right)$

$$
E\left(I, n_{\mathrm{wobb}}\right)=\frac{I(I+1)}{2 \mathcal{J}_{x}}+\hbar \omega_{\mathrm{wobb}}\left(n_{\mathrm{wobb}}+\frac{1}{2}\right)
$$

Reported wobbling bands

No wobbling at low spin !

Not easy to extract convincing mixing ratios from angular distributions of transitions with 10\% relative intensities!

Polarization asymmetry has very large errors for weak transitions!

PHYSICAL REVIEW C 101, 034306 (2020)

Revolving towards the medium axis No stable transverse geometry !!!

Tilted precession and wobbling in triaxial nuclei

E. A. Lawrie $\odot,{ }^{1,2,{ }^{*}}$ O. Shirinda $\odot,^{1, \dagger}$ and C. M. Petrache $\odot^{3,+}$

The wobbling approximation is valid if the rotational angular momenta around the two axes with lower MoI is small [16]:

$$
\begin{equation*}
I_{2}^{2}+I_{3}^{2} \ll I^{2} \tag{15}
\end{equation*}
$$

a condition that can be rewritten as

$$
\begin{equation*}
f(n, I)=(2 n+1) \frac{\left(A_{2}+A_{3}-2 A_{1}\right)}{2 I \sqrt{\left(A_{2}-A_{1}\right)\left(A_{3}-A_{1}\right)}} \ll 1 \tag{16}
\end{equation*}
$$

$A_{1}=1, A_{2}=4$, and $A_{3}=4$ are used

No wobbling in ${ }^{187} \mathrm{Au}$!

Longitudinal Wobbling Motion in ${ }^{187} \mathbf{A u}$

N. Sensharma, ${ }^{1}$ U. Garg, ${ }^{1}$ Q. B. Chen, ${ }^{2}$ S. Frauendorf, ${ }^{1}$ D. P. Burdette, ${ }^{1}$ J. L. Cozzi, ${ }^{1}$ K. B. Howard, ${ }^{1}$ S. Zhu, ${ }^{10}$ M. P. Carpenter, ${ }^{3}$ P. Copp, ${ }^{3}$ F. G. Kondev, ${ }^{3}$ T. Lauritsen, ${ }^{3}$ J. Li, ${ }^{3}$ D. Seweryniak, ${ }^{3}$ J. Wu, ${ }^{3}$ A. D. Ayangeakaa, ${ }^{4}$ D. J. Hartley, ${ }^{4}$ R. V. F. Janssens, ${ }^{5,6}$ A. M. Forney, ${ }^{7}$ W. B. Walters, ${ }^{7}$ S. S. Ghugre, ${ }^{8}$ and R. Palit ${ }^{9}$

PHYSICAL REVIEW C 100, 061301(R) (2019)

 Transverse wobbling in an even-even nucleus ${ }^{130} \mathrm{Ba}$Q. B. Chen $\odot,{ }^{1, *}$ S. Frauendorf, ${ }^{2, \dagger}$ and C. M. Petrache ${ }^{3, *}$

Two quasiparticle wobbling in the even-even nucleus ${ }^{130} \mathrm{Ba}$ Y.K. Wang ${ }^{\text {a }}$, F.Q. Chen ${ }^{\text {b }}$, P.W. Zhao ${ }^{\text {a,* }}$

TABLE I. Experimental and theoretical mixing ratios δ as well as the transition probability ratios $B(M 1)_{\text {out }} / B(E 2)_{\text {in }}$ and $B(E 2)_{\text {out }} / B(E 2)_{\text {in }}$ for the transitions from band Sl^{\prime} to band S 1 of ${ }^{138} \mathrm{Ba}$.

$I(\hbar)$	δ		$\frac{B(M 1)_{\text {out }}}{B(E 2)_{\text {俍 }}}\left(\frac{\mu_{N}^{2}}{e b^{2}}\right)$		$\frac{B(E 2)_{\text {ovt }}}{B(E 2)_{\text {in }}}$	
	Expt	PRM	Expt	PRM	Expt	PRM
13	-0.58_{-13}^{+13}	-0.67	0.36_{-13}^{+19}	1.11	0.32_{-15}^{+18}	0.51
15	-0.62_{-10}^{+10}	-0.68	0.38_{-16}^{+61}	0.90	0.36_{-19}^{+70}	0.42
17	-0.62_{-10}^{+10}	-0.68	$0.23{ }_{-09}^{+22}$	0.76	$0.22{ }_{-10}^{+27}$	0.35
19	-0.60	-0.66	$0.25{ }_{-08}^{+23}$	0.67	$0.22+21$	0.29
21	-0.60	-0.63	0.43_{-13}^{+35}	0.63	0.41_{-13}^{+34}	0.25

S2o-high

Spin, $I[t]$

Diversity of shapes and rotations in the γ-soft ${ }^{130} \mathrm{Ba}$ nucleus: First observation of a t-band in the $A=130$ mass region

Physics Letters B
mun.elsevier.com/locate/physletb
${ }^{130} \mathrm{Ba}$

S1

C.M. Petrache ${ }^{\mathrm{a}, *}$, P.M. Walker ${ }^{\text {b }}$, S. Guo ${ }^{\text {c,d. },}$, Q.B. Chen ${ }^{\text {c }}$, S. Frauendorf ${ }^{f}$, Y.X. Liug ${ }^{g}$,
R.A. Wyss ${ }^{\text {h }}$, D. Mengoni ${ }^{1}$, Y.H. Qiang ${ }^{\text {c }}$, A. Astier ${ }^{2}$, E. Dupont ${ }^{2}$, R. Li ${ }^{2}$, B.F. Lv ${ }^{\text {a }}$, K.K. Zheng ${ }^{\text {a }}$,
D. Bazzacco ${ }^{i}$, A. Boso ${ }^{i}$, A. Goasduff ${ }^{1}$, F. Recchia ${ }^{i}$, D. Testov ${ }^{i}$, F. Galtarossa ${ }^{j}$, G. Jaworsk ${ }^{j}{ }^{j}$, D.R. Napoli ${ }^{\text {, S. Riccetto }}{ }^{\text {, }}$, M. Siciliano ${ }^{\text {j,k }}$, J.J. Valiente-Dobon ${ }^{\text {J }}$, M.L. Liu ${ }^{\text {c,d }}$, X.H. Zhou ${ }^{\text {c,d }}$, J.G. Wang ${ }^{\text {c }}$, C. Andreoiu , F.H. Garcia ${ }^{1}$, K. Ortner ${ }^{1}$, K. Whitmore ${ }^{\text {, }}$, T. Bäck ${ }^{\text {h }}$, B. Cederwall ${ }^{\text {h }}$, E.A. Lawrie ${ }^{\text {m }}$. I. Kuti ${ }^{\text {n }}$. D. Sohler ${ }^{\mathrm{n}}$. J. Timár ${ }^{\mathrm{n}}$. T. Marchlewski ${ }^{\circ}$, J. Srebrny ${ }^{\circ}$, A. Tucholski ${ }^{\circ}$

Microscopic investigation on the existence of transverse wobbling under the effect of rotational alignment: the ${ }^{136} \mathrm{Nd}$ case

Fang-Qi Chen ${ }^{1}$ and C. M. Petrache ${ }^{2}$
of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
${ }^{2}$ Centre de Sciences Nucléaires et Sciences de la Matière, CNRS/IN2P3,
Université Paris-Saclay, Bâtiment 104-108, 91405 Orsay, France
(Dated: November 11, 2020)

$\pi\left(h_{11 / 2}\right)^{2}$

Risk of misinterpretation of low-spin bands in odd-even nuclei as wobbling bands instead of Tilted Precession (TiP) bands

Wobbling at low spins? => NO: not supported by experiment and by theory ${ }^{135} \mathrm{Pr}$ - no wobbling (1 PLB \& 1 PRL submitted)
${ }^{187} \mathrm{Au}$ - no wobbling (1 PLB submitted)
Tilted Precession at low spin in general - PRC 101, 034306 (2020)
Tilted Precession at low spin in ${ }^{135} \mathrm{Nd}$ - PRC 103, 044308 (2021)

2-qp wobbling at high spins => YES
2-qp wobbling in ${ }^{130} \mathrm{Ba}$ - PRC 100, $061301(\mathrm{R})(2019)$
2-qp wobbling in ${ }^{136} \mathrm{Nd}$ - PRC submitted

Challenges and perspectives for chiral and wobbling bands, and shape coexistence

Chirality

New types of chiral motion.
Robustness of chirality against other broken symmetries.

Wobbling

- Consolidate the experimental results, which at present are NOT conclusive, but only SUGGEST the possible existence of low-spin wobbling bands!
- Measurement of mixing ratios with very high precision, therefore high statistics, which imply long beam times and/or very high efficiency setups.

Shape coexistence - new regions, global view

