

Three successful experiments

RITU + JUROGAM II – 2016 (B. F. Lv) ¹³⁵Nd, ¹³⁶Nd, ¹³⁷Nd – multiple chiral bands ¹³⁵Nd – Wobbling at low spin **NO** ¹³⁶Nd – Wobbling 2qp at high spin **YES** (F.Q. Chen)

GALILEO + EUCLIDES + N WALL – 2017 (S. Guo) ¹³⁰Ba – Wobbling 2qp **YES** (Q. B. Chen, Y. X. Liu) ¹³¹Ba – chiral bands+octupole correlations

MARA + JUROGAM III – 2019 (K. K. Zheng) ¹¹⁹Cs – electric revolving chirality ¹¹⁹Cs – prolate-oblate shape coexistence ¹¹⁹Ba – neutron 1-qp configurations ¹¹⁸Cs – isomers at the proton-drip line

JUROGAM II + RITU, 40 Ar+ 100 Mo \rightarrow Nd 20 pnA (1 week, October 2016)

Uusitalo

Greenlees

JUROGAM II

24 Clovers HPGe 15 Coaxial HPGe 39 BGO shields ε_{...} = 4 %

MARA + JUROGAM 3, ${}^{64}Zn+{}^{58}Ni \rightarrow Cs, Ba, LA (3 days, May 2019)$

25 HPGe

15 scintill. det.

Frauendorf & Meng, NPA 617, 1997

Chirality in odd-even nuclei: 3-qp configurations

Chirality in even-even nuclei: 4-qp configurations

Y. X. Luo, et al. - PLB 670 (2009) 307

^{110,112}Ru - Many of the experimental findings can be explained by microscopic calculations that combine the TAC mean-field with RPA but a simple geometrical explanation is not apparent.

The lowest configuration is obtained by exciting a neutron from the highest $h_{11/2}$ level to the low-lying mixed $d_{5/2} - g_{7/2}$ levels.

The tendency to chirality comes about from the interplay of all the neutrons in the open shell, and we could not find a simple partition.

Five chiral doublets in one nucleus: apotheosis of chirality in ¹³⁶Nd

CP, B.F. Lv, et al. PRC 97 (2018) 041304(R)

Breaking two pairs of nucleons and placing them in orbitals with orthogonal angular momenta lead to much more combinations than in odd-odd nuclei.

The challenge is to identify the very weakly populated 4-qp bands!

Ultimate chirality: clear evidence in even-even nuclei

¹³⁶Nd – D2 chiral doublet

π h³ (dg)⁻¹ \otimes v h⁻¹(sd)⁻¹ (3 particles+3 holes)

¹³⁶Nd – chiral doublet D5 (I=2%)

10³

Numerical details

- Configuration: $\pi (1h_{11/2})^2 (1g_{7/2})^{-2} \nu (1h_{11/2})^{-1} (1f_{7/2})^1$ •
- Deformation: ($\beta = 0.26$, $\gamma = 23.0^{\circ}$) •
- Irr. MOI: $\Im = 40$ MeV •
- **Coriolis attenuation factor: 0.93** •

Multiple chiral doublets in four-*j* shells particle rotor model: Five possible chiral doublets in ${}^{136}_{60}$ Nd₇₆

Q.B. Chen^a, B.F. Lv^b, C.M. Petrache^b, J. Meng^{c,d,e,*}

Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations

S. Guo^{a,b,*}, C.M. Petrache^{c,*}, D. Mengoni^{d,e}, Y.H. Qiang^a, Y.P. Wang^f, Y.Y. Wang^f, J. Meng^{f,g}, Y.K. Wang^f, S.Q. Zhang^f, P.W. Zhao^f, A. Astier^c, J.G. Wang^{a,b}, H.L. Fan^a, E. Dupont^c, B.F. Lv^c, D. Bazzacco^{d,e}, A. Boso^{d,e}, A. Goasduff^{d,e}, F. Recchia^{d,e}, D. Testov^{d,e}, F. Galtarossa^{h,i}, G. Jaworski^h, D.R. Napoli^h, S. Riccetto^h, M. Siciliano^h, J.J. Valiente-Dobon^h, M.L. Liu^{a,b}, G.S. Li^{a,b}, X.H. Zhou^{a,b}, Y.H. Zhang^{a,b}, C. Andreoiu^j, F.H. Garcia^j, K. Ortner^j, K. Whitmore^j, A. Ataç-Nyberg^k, T. Bäck^k, B. Cederwall^k, E.A. Lawrie^{1,m}, I. Kutiⁿ, D. Sohlerⁿ, T. Marchlewski^o, J. Srebrny^o, A. Tucholski^o

Electric revolving chirality at the limits

New chiral bands in A=130 region

B.W. Xiong, Y.Y. Wang, ADNDT 125 (2018) 193: Nuclear chiral bands data tables

Oblate-prolate coexistence at the limits

TAC-CDFT

Figure 11. Nilsson diagram for protons, 50 \leq Z \leq 82 (ϵ_4 = $\epsilon_2^2/6).$

Wobbling outside of the A=160 mass region

- low-spin 1-qp bands: NO - high-spin 1,2-qp bands: YES

Wobbling bands theoretical predictions and calculations

No wobbling at low spin !

Not easy to extract convincing mixing ratios from angular distributions of transitions with 10% relative intensities!

Polarization asymmetry has very large errors for weak transitions!

O

No wobbling at low spins, high risk of misinterpretation

PHYSICAL REVIEW C 101, 034306 (2020)

Tilted precession and wobbling in triaxial nuclei

E. A. Lawrie⁽¹⁾,^{1,2,*} O. Shirinda⁽¹⁾,[†] and C. M. Petrache^{(3),‡}

The wobbling approximation is valid if the rotational angular momenta around the two axes with lower MoI is small [16]:

$$I_2^2 + I_3^2 \ll I^2, \tag{15}$$

a condition that can be rewritten as

$$f(n,I) = (2n+1)\frac{(A_2 + A_3 - 2A_1)}{2I\sqrt{(A_2 - A_1)(A_3 - A_1)}} \ll 1.$$
 (16)

135 D

(R)

x

 $A_1 = 1, A_2 = 4$, and $A_3 = 4$ are used

Editors' Suggestion

Featured in Physics

No wobbling in ¹⁸⁷Au !

Longitudinal Wobbling Motion in ¹⁸⁷Au

N. Sensharma,¹ U. Garg,¹ Q. B. Chen,² S. Frauendorf,¹ D. P. Burdette,¹ J. L. Cozzi,¹ K. B. Howard,¹ S. Zhu,¹⁰ M. P. Carpenter,³ P. Copp,³ F. G. Kondev,³ T. Lauritsen,³ J. Li,³ D. Seweryniak,³ J. Wu,³ A. D. Ayangeakaa,⁴ D. J. Hartley,⁴ R. V. F. Janssens,^{5,6} A. M. Forney,⁷ W. B. Walters,⁷ S. S. Ghugre,⁸ and R. Palit⁹

Risk of misinterpretation of low-spin bands in odd-even nuclei as wobbling bands instead of Tilted Precession (TiP) bands

Wobbling at low spins? => NO: not supported by experiment and by theory ¹³⁵Pr – no wobbling (1 PLB & 1 PRL submitted) ¹⁸⁷Au – no wobbling (1 PLB submitted) Tilted Precession at low spin in general – PRC 101, 034306 (2020) Tilted Precession at low spin in¹³⁵Nd – PRC 103, 044308 (2021)

2-qp wobbling at high spins => YES 2-qp wobbling in ¹³⁰Ba – PRC 100, 061301(R) (2019) 2-qp wobbling in ¹³⁶Nd – PRC submitted

Challenges and perspectives for chiral and wobbling bands, and shape coexistence

Chirality

New types of chiral motion.

Robustness of chirality against other broken symmetries.

Wobbling

Consolidate the experimental results, which at present are NOT conclusive, but only SUGGEST the possible existence of low-spin wobbling bands!

Measurement of mixing ratios with very high precision, therefore high statistics, which imply long beam times and/or very high efficiency setups.

Shape coexistence – new regions, global view

