Connecting the proxy-SU(3) symmetry to the shell model

Dennis Bonatsos INPP, NCSR Demokritos

Nuclear Research Centre Demokritos 1961

The people behind the work

A. Martinou (Demokritos)

N. Minkov (INRNE, Sofia)

I.E. Assimakis (NTUA)

J. Cseh (INR, Debrecen)

S. Sarantopoulou (NTUA)

H. Sobhani (Iran)

S. Peroulis (U. Athens)

H. Hassanabadi (Iran)

proxy-SU(3) pseudo-SU(3)

1h11/2->1g9/2 sdg -> pf

proxy-SU(3) replacements Nilsson 0[110] pairs $\Delta K[\Delta N \Delta N z \Delta \Lambda]$ 1h11/21g9/21/2[550] 1/2[440] 3/2[541] 3/2[431] 5/2[532] 5/2[422] 7/2[523] 7/2[413] 9/2[404] 9/2[514] 11/2[505]

50-82 shell

orbitals left out of the symmetry

pseudo-SU(3): 1/2[550], 3/2[541], 5/2[532], 7/2[523], 9/2[514], 11/2[505]

proxy-SU(3): 11/2[505] (at the top)

Nilsson model

R.

Figure 5. Nilsson diagram for neutrons, 50 \leq N \leq 82 ($\varepsilon_4 = \varepsilon_2^2/6$).

14164

Proxy-SU(3)

Uses Nilsson 0[110] pairs $\Delta K[\Delta N \Delta Nz \Delta \Lambda]$

First used for proton-neutron interaction R.B. Cakirli, K. Blaum, and R.F. Casten, Phys. Rev. C 82 (2010) 061304(R)

Same angular momentum content Large overlaps D. B., S. Karampagia, R.B. Cakirli, R.F. Casten, K. Blaum, L. Amon Susam, Phys. Rev. C 88 (2013) 054309

Matrix of the Nilsson H for the sdg proton shell

	$\frac{1}{2}[400]$	$\frac{1}{2}[411]$	$\frac{3}{2}[402]$	$\frac{1}{2}[420]$	$\frac{3}{2}[411]$	$\frac{5}{2}[402]$	$\frac{1}{2}[431]$	$\frac{3}{2}[422]$	$\frac{5}{2}[413]$	$\frac{7}{2}[404]$	$\frac{1}{2}[440]$	$\frac{3}{2}[431]$	$\frac{5}{2}[422]$	$\frac{7}{2}[413]$	$\frac{9}{2}[404]$
1/2[400]	6.28	-0.13	0	0.22	0	0	0	0	0	0	0	0	0	0	0
1/2[411]		5.74	0	0.18	0	0	0.27	0	0	0	0	0	0	0	0
3/2[402]			6.26	0	0.16	0	0	0.19	0	0	0	0	0	0	0
1/2[420]				5.30	0	0	-0.16	0	0	0	0.27	0	0	0	0
3/2[411]					5.61	0	0	-0.13	0	0	0	0.27	0	0	0
5/2[402]						6.00	0	0	-0.09	0	0	0	0.19	0	0
1/2[431]							5.06	0	0	0	0.18	0	0	0	0
3/2[422]								5.27	0	0	0	0.22	0	0	0
5/2[413]									5.56	0	0	0	0.22	0	0
7/2[404]										5.93	0	0	0	0.18	0
1/2[440]											5.73	0	0	0	0
3/2[431]												5.74	0	0	0
5/2[422]													5.82	0	0
7/2[413]														5.98	0
9/2[404]															6.22

Shell model basis |n L J Mj>

Nilsson model pairs 0[110] basis K[N Nz Λ] Δ K[Δ N Δ Nz Δ Λ]

shell model pairs ???

basis |n L J Mj> $|\Delta n \Delta L \Delta J \Delta Mj>$

Elliott SU(3) sd shell

J.P. Elliott, Proc. Roy. Soc. Ser. A 245 (1958) 128, 562

J.P. Elliott and M. Harvey, 272 (1963) 557

classification in terms of SU(3)

cartesian basis [Nz Nx Ny Ms]

Elliott to shell model basis

[Nz Nx Ny Ms] = R [n L M Ms]

R: unitary transformation Davies and Krieger, Can. J. Phys. 69 (1991) 62

[n L M Ms] = C | n L J Mj> C: Clebsch Gordan coefficients

[Nz Nx Ny Ms] = R C | n L J Mj> Elliott shell model

Table 3 The same as Table	l, but for .	$\mathcal{N}=2, \mathbf{r}$	elated the h	narmonic o	scillator	shell 820) (sd shell)), or to the	proxy-SU((3) shell 1	4-26	
$ n_z, n_x, n_y, m_s\rangle n, l, j, m_j\rangle$	$\left 2s_{-1/2}^{1/2}\right\rangle$	$\left 2s_{1/2}^{1/2}\right\rangle$	$\left 1d_{-3/2}^{3/2}\right\rangle$	$\left 1d_{-1/2}^{3/2}\right\rangle$	$\left 1d_{1/2}^{3/2}\right\rangle$	$\left 1d_{3/2}^{3/2}\right\rangle$	$\left 1d_{-5/2}^{5/2}\right\rangle$	$\left 1d_{-3/2}^{5/2}\right\rangle$	$\left 1d_{-1/2}^{5/2}\right\rangle$	$ 1d_{1/2}^{5/2}\rangle$	$\left 1d_{3/2}^{5/2}\right\rangle$	$\left 1d_{5/2}^{5/2} \right $
$ 0, 0, 2, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{1}{\sqrt{15}}$	0	$-\frac{1}{\sqrt{5}}$	$-\frac{1}{2}$	0	$-\frac{1}{\sqrt{10}}$	0	$-\frac{1}{2\sqrt{5}}$	0
$ 0, 0, 2, \frac{1}{2}\rangle$	0	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{5}}$	0	$\frac{1}{\sqrt{15}}$	0	0	$-\frac{1}{2\sqrt{5}}$	0	$-\frac{1}{\sqrt{10}}$	0	$-\frac{1}{2}$
$ 0, 1, 1, -\frac{1}{2}\rangle$	0	0	0	0	0	$-i\sqrt{\frac{2}{5}}$	$\frac{i}{\sqrt{2}}$	0	0	0	$-\frac{i}{\sqrt{10}}$	0
$[0, 1, 1, \frac{1}{2}]$	0	0	$-i\sqrt{\frac{2}{5}}$	0	0	0	0	$\frac{i}{\sqrt{10}}$	0	0	0	$-\frac{i}{\sqrt{2}}$
$\left 0,2,0,-\frac{1}{2}\right\rangle$	$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{\sqrt{5}}$	$\frac{1}{2}$	0	$-\frac{1}{\sqrt{10}}$	0	$\frac{1}{2\sqrt{5}}$	0
$\left 0,2,0,\frac{1}{2}\right\rangle$	0	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{5}}$	0	$\frac{1}{\sqrt{15}}$	0	0	$\frac{1}{2\sqrt{5}}$	0	$-\frac{1}{\sqrt{10}}$	0	$\frac{1}{2}$
$ 1, 0, 1, -\frac{1}{2}\rangle$	0	0	$\frac{i}{\sqrt{10}}$	0	$i\sqrt{\frac{3}{10}}$	0	0	$i\sqrt{\frac{2}{5}}$	-()	$\frac{1}{\sqrt{5}}$	0	0
$ 1, 0, 1, \frac{1}{2}\rangle$	0	0	0	$-i\sqrt{\frac{3}{10}}$	0	$-\frac{i}{\sqrt{10}}$	0	0	$\frac{i}{\sqrt{5}}$	0	$i\sqrt{\frac{2}{5}}$	0
$ 1, 1, 0, -\frac{1}{2}\rangle$	0	0	$\frac{1}{\sqrt{10}}$	0	$-\sqrt{\frac{3}{10}}$	0	0	$\sqrt{\frac{2}{5}}$	0	$-\frac{1}{\sqrt{5}}$	0	0
$ 1, 1, 0, \frac{1}{2}\rangle$	0	0	0	$-\sqrt{\frac{3}{10}}$	0	$\frac{1}{\sqrt{10}}$	0	0	$\frac{1}{\sqrt{5}}$	0	$-\sqrt{\frac{2}{5}}$	0
$ 2, 0, 0, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}$	0	0	$\frac{2}{\sqrt{15}}$	0	0	0	0	$\sqrt{\frac{2}{5}}$	0	0	0
$ 2, 0, 0, \frac{1}{2}\rangle$	0	$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{2}{\sqrt{15}}$	0	0	0	0	$\sqrt{\frac{2}{5}}$	0	0

unitary transformation $|0 \ 1 \ 1 \ 0 > pairs |\Delta n \ \Delta L \ \Delta J \ \Delta Mj >$

Proxy-SU(3) pairs

Nilsson model pairs 0[110] basis K[N Nz Λ] Δ K[Δ N Δ Nz Δ Λ]

shell model pairs |0 1 1 0> basis |n L J Mj> $|\Delta n \Delta L \Delta J \Delta Mj>$

de Shalit – Goldhaber pairs

A. de Shalit and M. Goldhaber, PR 92 (1953) 1211 β transition probabilities

maximum interaction neutrons 1i13/2 1h11/2 1g9/2 1f7/2 1d5/2 protons 1h11/2 1g9/2 1f7/2 1d5/2 1p3/2

|0 1 1 0> pairs

 $|\Delta n \Delta L \Delta J M\Delta j>$

$\frac{\frac{3}{2}[541]}{ N j\Omega\rangle}$	$\left 51\frac{3}{2}\frac{3}{2}\right\rangle$	53 5 2	$\left \frac{3}{2}\right\rangle$	$\left 53\frac{7}{2}\frac{3}{2}\right\rangle$	$\left 55\frac{9}{2}\frac{3}{2}\right\rangle$	$\left 55\frac{11}{2}\frac{3}{2}\right\rangle$
0.05	0.0025	-0.00)15	0.0641	-0.0122	0.9979
0.22	0.0371	-0.02	286	0.2565	-0.0640	0.9633
0.30	0.0601	-0.05	506	0.3287	-0.0922	0.9366
$\frac{3}{2}[651]$ <i>NIj</i> Ω > ϵ	$\left 62\frac{3}{2}\frac{3}{2}\right\rangle$	$\left 62\frac{5}{2}\frac{3}{2}\right\rangle$	$\left 64\frac{7}{2}\frac{3}{2}\right\rangle$	$\left 64\frac{9}{2}\frac{3}{2}\right\rangle$	$\left 66\frac{11}{2}\frac{3}{2}\right\rangle$	$\left 66\frac{13}{2}\frac{3}{2}\right\rangle$
0.05	-0.0002	0.0046	-0.0013	0.0821	-0.0086	0.9966
0.22	-0.0100	0.0711	-0.0278	0.3240	-0.0469	0.9418
0.30	-0.0207	0.1149	-0.0509	0.4091	-0.0687	0.9010

Table 1 Expansions of Nilsson orbitals $\Omega[Nn_z\Lambda]$ in the shell model basis $|Nlj\Omega\rangle$ for three different values of the deformation ϵ

The Nilsson orbitals shown possess the highest total angular momentum j in their shell. The existence of a leading shell model eigenvector is evident at all deformations. See Sect. 5 for further discussion

future

shell model calculations taking advantage of the proxy-SU(3) symmetry

LONG VERSION

Connecting the proxy-SU(3) symmetry to the shell model

Dennis Bonatsos INPP, NCSR Demokritos

Nuclear Research Centre Demokritos 1961

The people behind the work

A. Martinou (Demokritos)

N. Minkov (INRNE, Sofia)

I.E. Assimakis (NTUA)

J. Cseh (INR, Debrecen)

S. Sarantopoulou (NTUA)

H. Sobhani (Iran)

S. Peroulis (U. Athens)

H. Hassanabadi (Iran)

• Elliott -> shell model

A. Martinou, D.B., N. Minkov, I.E. Assimakis, S.K. Peroulis, S. Sarantopoulou, J. Cseh, EPJA 56 (2020) 239

• Nilsson -> shell model

D.B., H. Sobhani, H. Hassanabadi, EPJP 135 (2020) 710

(ambitious) plan

- Proxy-SU(3) in Nilsson model 0[110] pairs $\Delta K[\Delta N \Delta Nz \Delta \Lambda]$
- Elliott SU(3), cartesian coordinates
 -> shell model, spherical coordinates
- de Shalit Goldhaber pairs
 |0 1 1 0> pairs
 |Δn ΔL ΔJ ΔMj>
- Comparison to pseudo-SU(3)
- Shell model calculations with proxy-SU(3)

Proxy-SU(3)

- Proxy-SU(3) symmetry
 D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou, R. B. Cakirli,
 R. F. Casten, and K. Blaum, Phys. Rev. C 95 (2017) 064325
- Nuclear shapes, prolate-oblate shape transition
 D. Bonatsos, I. E. Assimakis, N. Minkov, A. Martinou,
 S. Sarantopoulou, R. B. Cakirli, R. F. Casten, and K. Blaum,
 Phys. Rev. C 95 (2017) 064326

Proxy-SU(3) 50-82 shell

proxy-SU(3) replacements Nilsson 0[110] pairs $\Delta K[\Delta N \Delta N z \Delta \Lambda]$ 1h11/21g9/21/2[550] 1/2[440] 3/2[541] 3/2[431] 5/2[532] 5/2[422] 7/2[523] 7/2[413] 9/2[404] 9/2[514] 11/2[505]

Proxy-SU(3)

Uses Nilsson 0[110] pairs $\Delta K[\Delta N \Delta Nz \Delta \Lambda]$

First used for proton-neutron interaction R.B. Cakirli, K. Blaum, and R.F. Casten, Phys. Rev. C 82 (2010) 061304(R)

Same angular momentum content Large overlaps D. B., S. Karampagia, R.B. Cakirli, R.F. Casten, K. Blaum, L. Amon Susam, Phys. Rev. C 88 (2013) 054309

Why does proxy-SU(3) work?

Compare usual Nilsson calculation proxy-SU(3) calculation

Few and small extra matrix elements

Nilsson model

$$H = H_{osc} + v_{ls}\hbar\omega_0(\mathbf{l}\cdot\mathbf{s}) + v_{ll}\hbar\omega_0(\mathbf{l}^2 - \langle \mathbf{l}^2 \rangle_N)$$

$$H_{osc} = \frac{\mathbf{p}^2}{2M} + \frac{1}{2}M(\omega_z^2 z^2 + \omega_\perp^2 (x^2 + y^2))$$

$$E_{osc} = \hbar\omega_0 \left(N + \frac{3}{2} - \frac{1}{3}\epsilon(3n_z - N) \right)$$

$$\langle l^2 \rangle_N = \frac{1}{2}N(N+3)$$

$$\omega_z = \omega_0 \left(1 - \frac{2}{3} \epsilon \right) \qquad \omega_\perp = \omega_0 \left(1 + \frac{1}{3} \epsilon \right) \qquad \epsilon = \frac{\omega_\perp - \omega_z}{\omega_0}$$

Matrix of the Nilsson H for the 50-82 proton shell

	$\frac{1}{2}[400]$	$\frac{1}{2}[411]$	$\frac{3}{2}[402]$	$\frac{1}{2}[420]$	$\frac{3}{2}[411]$	$\frac{5}{2}[402]$	$\frac{1}{2}[431]$	$\frac{3}{2}[422]$	$\frac{5}{2}[413]$	$\frac{7}{2}[404]$	$\frac{1}{2}[550]$	$\frac{3}{2}[541]$	$\frac{5}{2}[532]$	$\frac{7}{2}[523]$	$\frac{9}{2}[514]$	$\frac{11}{2}[505]$
1/2[400]	6.28	-0.13	0	0.22	0	0	0	0	0	0	0	0	0	0	0	0
1/2[411]		5.74	0	0.18	0	0	0.27	0	0	0	0	0	0	0	0	0
3/2[402]			6.26	0	0.16	0	0	0.19	0	0	0	0	0	0	0	0
1/2[420]				5.30	0	0	-0.16	0	0	0	0	0	0	0	0	0
3/2[411]					5.61	0	0	-0.13	0	0	0	0	0	0	0	0
5/2[402]						6.00	0	0	-0.09	0	0	0	0	0	0	0
1/2[431]							5.06	0	0	0	0	0	0	0	0	0
3/2[422]								5.27	0	0	0	0	0	0	0	0
5/2[413]									5.56	0	0	0	0	0	0	0
7/2[404]										5.93	0	0	0	0	0	0
1/2 550											5.88	0	0	0	0	0
3/2[541]												5.81	0	0	0	0
5/2[532]													5.82	0	0	0
7/2[523]														5.90	0	0
9/2[514]															6.06	0
11/2[505]																6.30

Matrix of the Nilsson H for the sdg proton shell

	$\frac{1}{2}[400]$	$\frac{1}{2}[411]$	$\frac{3}{2}[402]$	$\frac{1}{2}[420]$	$\frac{3}{2}[411]$	$\frac{5}{2}[402]$	$\frac{1}{2}[431]$	$\frac{3}{2}[422]$	$\frac{5}{2}[413]$	$\frac{7}{2}[404]$	$\frac{1}{2}[440]$	$\frac{3}{2}[431]$	$\frac{5}{2}[422]$	$\frac{7}{2}[413]$	$\frac{9}{2}[404]$
1/2[400]	6.28	-0.13	0	0.22	0	0	0	0	0	0	0	0	0	0	0
1/2[411]		5.74	0	0.18	0	0	0.27	0	0	0	0	0	0	0	0
3/2[402]			6.26	0	0.16	0	0	0.19	0	0	0	0	0	0	0
1/2[420]				5.30	0	0	-0.16	0	0	0	0.27	0	0	0	0
3/2[411]					5.61	0	0	-0.13	0	0	0	0.27	0	0	0
5/2[402]						6.00	0	0	-0.09	0	0	0	0.19	0	0
1/2[431]							5.06	0	0	0	0.18	0	0	0	0
3/2[422]								5.27	0	0	0	0.22	0	0	0
5/2[413]									5.56	0	0	0	0.22	0	0
7/2[404]										5.93	0	0	0	0.18	0
1/2[440]											5.73	0	0	0	0
3/2[431]												5.74	0	0	0
5/2[422]													5.82	0	0
7/2[413]														5.98	0
9/2[404]															6.22

Nilsson model pairs 0[110] basis K[N Nz Λ] Δ K[Δ N Δ Nz Δ Λ]

shell model pairs ???

basis |n L J Mj> $|\Delta n \Delta L \Delta J \Delta Mj>$

Elliott SU(3) sd shell

J.P. Elliott, Proc. Roy. Soc. Ser. A 245 (1958) 128, 562

J.P. Elliott and M. Harvey, 272 (1963) 557

classification in terms of SU(3)

cartesian basis [Nz Nx Ny Ms]

Shell model basis |n L J Mj>

Elliott to shell model basis

[Nz Nx Ny Ms] = R [n L M Ms]

R: unitary transformation Davies and Krieger, Can. J. Phys. 69 (1991) 62

[n L M Ms] = C | n L J Mj> C: Clebsch Gordan coefficients

[Nz Nx Ny Ms] = R C | n L J Mj> Elliott shell model

Table 3 The same as Table	l, but for .	$\mathcal{N}=2, \mathbf{r}$	elated the h	narmonic o	scillator	shell 820) (sd shell)), or to the	proxy-SU((3) shell 1	4-26	
$ n_z, n_x, n_y, m_s\rangle n, l, j, m_j\rangle$	$\left 2s_{-1/2}^{1/2}\right\rangle$	$\left 2s_{1/2}^{1/2}\right\rangle$	$\left 1d_{-3/2}^{3/2}\right\rangle$	$\left 1d_{-1/2}^{3/2}\right\rangle$	$\left 1d_{1/2}^{3/2}\right\rangle$	$\left 1d_{3/2}^{3/2}\right\rangle$	$\left 1d_{-5/2}^{5/2}\right\rangle$	$\left 1d_{-3/2}^{5/2}\right\rangle$	$\left 1d_{-1/2}^{5/2}\right\rangle$	$ 1d_{1/2}^{5/2}\rangle$	$\left 1d_{3/2}^{5/2}\right\rangle$	$\left 1d_{5/2}^{5/2} \right $
$ 0, 0, 2, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{1}{\sqrt{15}}$	0	$-\frac{1}{\sqrt{5}}$	$-\frac{1}{2}$	0	$-\frac{1}{\sqrt{10}}$	0	$-\frac{1}{2\sqrt{5}}$	0
$ 0, 0, 2, \frac{1}{2}\rangle$	0	$-\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{5}}$	0	$\frac{1}{\sqrt{15}}$	0	0	$-\frac{1}{2\sqrt{5}}$	0	$-\frac{1}{\sqrt{10}}$	0	$-\frac{1}{2}$
$ 0, 1, 1, -\frac{1}{2}\rangle$	0	0	0	0	0	$-i\sqrt{\frac{2}{5}}$	$\frac{i}{\sqrt{2}}$	0	0	0	$-\frac{i}{\sqrt{10}}$	0
$[0, 1, 1, \frac{1}{2}]$	0	0	$-i\sqrt{\frac{2}{5}}$	0	0	0	0	$\frac{i}{\sqrt{10}}$	0	0	0	$-\frac{i}{\sqrt{2}}$
$\left 0,2,0,-\frac{1}{2}\right\rangle$	$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{1}{\sqrt{15}}$	0	$\frac{1}{\sqrt{5}}$	$\frac{1}{2}$	0	$-\frac{1}{\sqrt{10}}$	0	$\frac{1}{2\sqrt{5}}$	0
$\left 0,2,0,\frac{1}{2}\right\rangle$	0	$-\frac{1}{\sqrt{3}}$	$-\frac{1}{\sqrt{5}}$	0	$\frac{1}{\sqrt{15}}$	0	0	$\frac{1}{2\sqrt{5}}$	0	$-\frac{1}{\sqrt{10}}$	0	$\frac{1}{2}$
$ 1, 0, 1, -\frac{1}{2}\rangle$	0	0	$\frac{i}{\sqrt{10}}$	0	$i\sqrt{\frac{3}{10}}$	0	0	$i\sqrt{\frac{2}{5}}$	-()	$\frac{1}{\sqrt{5}}$	0	0
$ 1, 0, 1, \frac{1}{2}\rangle$	0	0	0	$-i\sqrt{\frac{3}{10}}$	0	$-\frac{i}{\sqrt{10}}$	0	0	$\frac{i}{\sqrt{5}}$	0	$i\sqrt{\frac{2}{5}}$	0
$ 1, 1, 0, -\frac{1}{2}\rangle$	0	0	$\frac{1}{\sqrt{10}}$	0	$-\sqrt{\frac{3}{10}}$	0	0	$\sqrt{\frac{2}{5}}$	0	$-\frac{1}{\sqrt{5}}$	0	0
$ 1, 1, 0, \frac{1}{2}\rangle$	0	0	0	$-\sqrt{\frac{3}{10}}$	0	$\frac{1}{\sqrt{10}}$	0	0	$\frac{1}{\sqrt{5}}$	0	$-\sqrt{\frac{2}{5}}$	0
$ 2, 0, 0, -\frac{1}{2}\rangle$	$-\frac{1}{\sqrt{3}}$	0	0	$\frac{2}{\sqrt{15}}$	0	0	0	0	$\sqrt{\frac{2}{5}}$	0	0	0
$ 2, 0, 0, \frac{1}{2}\rangle$	0	$-\frac{1}{\sqrt{3}}$	0	0	$-\frac{2}{\sqrt{15}}$	0	0	0	0	$\sqrt{\frac{2}{5}}$	0	0

unitary transformation $|0 \ 1 \ 1 \ 0 > pairs |\Delta n \ \Delta L \ \Delta J \ \Delta Mj >$

de Shalit – Goldhaber pairs

A. de Shalit and M. Goldhaber, PR 92 (1953) 1211 β transition probabilities

maximum interaction neutrons 1i13/2 1h11/2 1g9/2 1f7/2 1d5/2 protons 1h11/2 1g9/2 1f7/2 1d5/2 1p3/2

|0 1 1 0> pairs

 $|\Delta n \Delta L \Delta J M\Delta j>$

Proxy-SU(3) pairs

Nilsson model pairs 0[110] basis K[N Nz Λ] Δ K[Δ N Δ Nz Δ Λ]

shell model pairs |0 1 1 0> basis |n L J Mj> $|\Delta n \Delta L \Delta J \Delta Mj>$ • Elliott -> shell model

A. Martinou, D.B., N. Minkov, I.E. Assimakis, S.K. Peroulis, S. Sarantopoulou, J. Cseh, EPJA 56 (2020) 239

• Nilsson -> shell model

D.B., H. Sobhani, H. Hassanabadi, EPJP 135 (2020) 710

$\frac{\frac{3}{2}[541]}{ N j\Omega\rangle}$	$\left 51\frac{3}{2}\frac{3}{2}\right\rangle$	53 5 2	$\left \frac{3}{2}\right\rangle$	$\left 53\frac{7}{2}\frac{3}{2}\right\rangle$	$\left 55\frac{9}{2}\frac{3}{2}\right\rangle$	$\left 55\frac{11}{2}\frac{3}{2}\right\rangle$
0.05	0.0025	-0.00)15	0.0641	-0.0122	0.9979
0.22	0.0371	-0.02	286	0.2565	-0.0640	0.9633
0.30	0.0601	-0.05	506	0.3287	-0.0922	0.9366
$\frac{3}{2}[651]$ <i>NIj</i> Ω > ϵ	$\left 62\frac{3}{2}\frac{3}{2}\right\rangle$	$\left 62\frac{5}{2}\frac{3}{2}\right\rangle$	$\left 64\frac{7}{2}\frac{3}{2}\right\rangle$	$\left 64\frac{9}{2}\frac{3}{2}\right\rangle$	$\left 66\frac{11}{2}\frac{3}{2}\right\rangle$	$\left 66\frac{13}{2}\frac{3}{2}\right\rangle$
0.05	-0.0002	0.0046	-0.0013	0.0821	-0.0086	0.9966
0.22	-0.0100	0.0711	-0.0278	0.3240	-0.0469	0.9418
0.30	-0.0207	0.1149	-0.0509	0.4091	-0.0687	0.9010

Table 1 Expansions of Nilsson orbitals $\Omega[Nn_z\Lambda]$ in the shell model basis $|Nlj\Omega\rangle$ for three different values of the deformation ϵ

The Nilsson orbitals shown possess the highest total angular momentum j in their shell. The existence of a leading shell model eigenvector is evident at all deformations. See Sect. 5 for further discussion

$\frac{\frac{1}{2}}{ N j\Omega\rangle}$ ϵ	$\left 40\frac{1}{2}\frac{1}{2}\right\rangle$	42	$\left \frac{1}{2}\right\rangle$	$\left 42\frac{5}{2}\frac{1}{2}\right\rangle$	$\left 44\frac{7}{2}\frac{1}{2}\right\rangle$	$\left 44\frac{9}{2}\frac{1}{2}\right\rangle$
0.05	-0.0213	0.12	54	-0.0702	0.9893	0.0127
0.22	-0.2248	0.43	93	-0.2791	0.8057	0.1717
0.30	-0.2630	0.50	03	-0.2458	0.7447	0.2559
$\frac{\frac{1}{2}[541]}{ Nlj\Omega\rangle}$	$\left 51\frac{1}{2}\frac{1}{2}\right\rangle$	$\left 51\frac{3}{2}\frac{1}{2}\right\rangle$	$\left 53\frac{5}{2}\frac{1}{2}\right\rangle$	$\left 53\frac{7}{2}\frac{1}{2}\right\rangle$	$\left 55\frac{9}{2}\frac{1}{2}\right\rangle$	$\left 55\frac{11}{2}\frac{1}{2}\right\rangle$
0.05	-0.0200	0.1770	-0.0295	0.9780	-0.0446	-0.0944
0.22	-0.2492	0.4619	-0.3768	0.5550	-0.4161	-0.3185
0.30	-0.3121	0.4331	-0.4829	0.3430	-0.4789	-0.3671

Table 3 Expansions of Nilsson orbitals $\Omega[Nn_z\Lambda]$ in the shell model basis $|Nlj\Omega\rangle$ for three different values of the deformation ϵ

The Nilsson orbitals shown do not possess the highest total angular momentum j in their shell. The existence of a leading shell model eigenvector is evident at small deformation, but this is not the case anymore at higher deformations, at which several shell model eigenvectors make considerable contributions. See Sect. 7 for further discussion

Pseudo-SU(3)

R.D. Ratna Raju, J. P. Draayer, and K. T. Hecht, Nucl. Phys. A 202 (1973) 433

J.P. Draayer, K.J. Weeks, and K.T. Hecht, Nucl. Phys. A 381 (1982) 1

Pseudo-SU(3)

- Map the levels of normal parity through unitary transformation
- Leave levels of intruder parity unchanged

Proxy-SU(3)

- Map the levels of intruder parity through unitary transformation
- Leave levels of normal parity unchanged

proxy-SU(3) pseudo-SU(3)

1h11/2->1g9/2 sdg -> pf

approximation schemes

 Shell model
 proxy-SU(3)
 pseudo-SU(3)

 28-50
 pf
 U(10)
 sd
 U6)+1g9/2

 50-82
 sdg
 U(15)
 pf
 U(10)+1h11/2

 82-126
 pfh
 U(21)
 sdg
 U(15)+1i13/2

 126-184
 sdgi
 U(28)
 pfh
 U(21)+1j15/2

50-82 shell

orbitals left out of the symmetry

pseudo-SU(3): 1/2[550], 3/2[541], 5/2[532], 7/2[523], 9/2[514], 11/2[505]

proxy-SU(3): 11/2[505] (at the top)

Nilsson model

R.

Figure 5. Nilsson diagram for neutrons, 50 \leq N \leq 82 ($\varepsilon_4 = \varepsilon_2^2/6$).

14164

future

shell model calculations taking advantage of the proxy-SU(3) symmetry