Shape and electromagnetic properties of the 229m Th isomer

Nikolay Minkov

Institute of Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, Sofia, Bulgaria Research Group on Complex Deformed Atomic Nuclei

HINPW6, 14 May 2021

Collaboration and Support

Collaborator: Adriana Pálffy

Max-Planck-Institut für Kernphysik Heidelberg

and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen

Support:

Deutsche Forschungsgemeinschaft DFG Deutsche Forschungsgemeinschaft

BgNSF (Contract No. KP-06-N48/1)

 $\frac{229m}{P}$ [Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) Role of the shape in the isom
00000 00000 000

Contents

\bullet The 229m [Th isomer and the idea of nuclear clock](#page-3-0)

- 2 [The 8 eV isomer from a nuclear model perspective](#page-6-0)
	- [Quadrupole-octupole core plus particle model](#page-6-0)
	- [Energy, decay rate and lifetime prediction](#page-7-0)
	- [Magnetic dipole moments](#page-8-0)
- 3 [Role of the shape in the isomer formation and properties](#page-11-0) [DSM deformation space and areas of GS-IS quasi-degeneracy](#page-11-0) • [Full model fits in the DSM deformation space](#page-13-0)

 $\frac{229m}{\text{Th}}$ isomer and the idea of nuclear clock [The 8 eV isomer from a nuclear model perspective](#page-6-0) Role of the shape in the isom
00000 00000 \bullet 00 00000

229 Th levels and transitions. 229 ^mTh isomer and nuclear clock.

Advantages vs atomic clocks: better isolation from chem. environment; better frequency stability; higher accuracy: not lag behind / accelerate by more than a second in a period tens of times longer than the age of the Universe.

Possible applications: laser and plasma physics, metrology, geodesy, cosmology, gravitation waves, deep space navigation; ultra-precise chemical analysis etc.

[https://en.wikipedia.org/wiki/Nuclear](https://en.wikipedia.org/wiki/Nuclear_clock)_clock

What do we need to create a 229m Th clock?

The ^{229m}[Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) Role of the shape in the isom
00000 00000

Need of high precision $^{229m}\mathsf{Th}\ (3/2^+)$ energy measurement


```
D. Burke et al, PRC1990, NPA2008
R. Helmer, C. Reich, PRC1994, E<sub>IS</sub>∼3.5eV
```


Internal conversion electron (IC) spectroscopy: $E_{IS} = 8.28 \pm 0.17$ eV B. Seiferle et al, Nature 573, 243 (2019).

The ^{229m}[Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) Role of the shape in the isom 000 00000 00000

Need of high-precision determination of $229m$ Th lifetime

L. von der Wense, ..., P. Thi-
rolf et al, Nature 533, 47 (2016)

Lifetime needed $1)$ to unambiguously identify/characterize the 229m Th decay; 2) to adjust conditions for the frequency stabilization (laser frequency comb and other methods)

 \Rightarrow need of high-precision determination of B(M1) and B(E2) rates for nuclear $3/2^+_{\textit{IS}} \rightarrow 5/2^+_{\textit{GS}}$ transitions

Decay detection and lifetime estimates:

L. von Wense, ..., P. Thirolf et al, Nature 533, 47 (2016), $\tau(IC)$ ($^{229m}Th^{2+}$) \geq 60s B. Seiferle et al, PRL 118, 042501 (2017), τ (IC) (^{229m}Th) = 7 ± 1 μ s Magnetic moment measurement:

J. Thielking, …, P. Thirolf et al, Nature ${\bf 556}$, 321 (2018), μ ($^{229m}{\rm Th)}=-0.37(6)\mu_{\mathsf{N}}$ Knowledge of the magnetic dipole moment needed 1) to reduce the ambiguity in the $B(M1)$ and $B(E2)$ transition rates determination; 2) to reveal details of the nuclear microscopic mechanism governing the ²²⁹^mTh isomer formation.

The 229m [Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) Role of the shape in the isom
00000 00000 00000 00000

[Quadrupole-octupole core plus particle model](#page-6-0)

Quadrupole-octupole core plus particle model in 229 Th

N. Minkov and A. Pálffy, PRL 118, 212501 (2017) Hamiltonian, spectrum, E/M transition rates $H = H_{\text{quad-oct}} + H_{\text{S.p.}} + H_{\text{pair}} + H_{\text{Coriol}}$ $\mathcal{E}_{nk}(I^{\pi},\mathcal{K}_b)=\epsilon_{\mathsf{qp}}^{\mathcal{K}_b}+\hbar\omega[2n+1+\sqrt{k^2+b\widetilde{X}(I^{\pi},\mathcal{K}_b)}]$ $\widetilde{\Psi}_{nk\textsf{IMK}_b}^{\pi,\pi^b} = \frac{1}{\widetilde{N}_{l\pi K_b}}[\Psi_{nk\textsf{IMK}_b}^{\pi,\pi^b} + A\sum_{\nu\neq b} C_{K_{\nu}K_{b}}^{l\pi} \Psi_{nk\textsf{IMK}_{\nu}}^{\pi,\pi^b}]$ $\Psi^{\pi,\pi^b}_{nkIMK} = norm \cdot \Phi^{\pi\cdot\pi^b}_{nkI} [D^I_{MK} \mathcal{F}^{(\pi^b)}_K + \pi\cdot\pi^b(-1)^{I+K} D^I_{M-K} \mathcal{F}^{(\pi^b)}_{-K}]$ $B\left(\begin{array}{c}E\lambda\\M\lambda\end{array}\right)$ M1 $= \frac{1}{2l_{i}+1}$ $\left\langle \widetilde{\Psi}_{n_{f}k_{f}l_{f}}^{\pi_{f},\pi^{b_{f}}} \right\rangle$ n_f k_f I_f K_f $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array} \end{array}$ \hat{Q}_{λ} $\hat{M}1$ $\left\|\widetilde{\Psi}_{n_{i}k_{i}l_{i}}^{\pi_{i},\pi^{b_{i}}} \right\|$ n_i k_i I_i K_i $\Big\rangle\Big|$ 2 $, \lambda = 1, 2, 3$ $\hat{\mathcal{M}} 1 = \sqrt{\frac{3}{4\pi}} \mu_N [g_R (\hat{I}-\hat{j}) + g_{\rm s}\,\hat{\mathsf{s}} + g_I\, \hat{I}], \quad \hat{j} = \hat{I} + \hat{\mathsf{s}}, \quad \mu_N = \frac{e\hbar}{2mc}$

N. Minkov and A. Pálffy, PRL 122 162502 (2019) Magnetic dipole moment

 $\mu=\sqrt{\frac{4\pi}{3}}\langle \widetilde{\Psi}_{\textit{IIK}_{b}}|\hat{M}1_{z}|\widetilde{\Psi}_{\textit{IIK}_{b}}\rangle$ Application to ²²⁹Th with: $g_s = q_s \cdot g_s^{free}$ spin gyromagnetic quenching (core polarization effect): $q_s = 0.6$ $g_R = q_R \cdot Z/A$ collective gyromagnetic quenching (pairing effect): q_R =1.0, 0.8 (from exp. M1/E2), 0.7 (Nilsson), 0.6 (HF+BCS) The ^{229m}[Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) Role of the shape in the isom
0000 0000 00000

[Energy, decay rate and lifetime prediction](#page-7-0)

 229 Th: spectrum description and isomer lifetime prediction

N. Minkov and A. Pálffy, PRL 118, 212501 (2017)

DSM: Ground-state and isomer s.p. orbitals GS(5/2[633]), IS(3/2[631]) Quadrupole and octupole deformations: $\beta_2 = 0.240$, $\beta_3 = 0.115$

 \Rightarrow Transition probabilities for the 3/2⁺-isomer decay in ²²⁹Th predicted in the limits: $B(E2)=20-30$ W.u. $B(M1)=0.006-0.008$ W.u. \Rightarrow Predicted 229m Th lifetime of approx. 10^4 sec.

[Magnetic dipole moments](#page-8-0)

Magnetic moments in the $3/2^+_{\text{IS}}$ and $5/2^+_{\text{GS}}$ states of ^{229}Th

N. Minkov and A. Pálffy, PRL 122 162502 (2019)

Theoretical magnetic moments (in μ_N) for different q_R s compared to experiment

Th77: Modified Woods-Saxon Model, R. Chasman et al, RMP 49, 833 (1977) Th98: Nilsson Model, A. Dykhne and E. Tkalya, JETP Lett. 67, 251 (1998) Exp74: S. Gerstenkorn et al., J. Phys. 35, 483 (1974) Exp13: M. Safronova et al, PRA 88, 060501(R) (2013) Exp18a: R. Müller et al., PRA 98, 020503(R) (2018) Exp18b: J. Thielking,..., P.Thirolf, E.Peik, Nature 556, 321 (2018)

[Magnetic dipole moments](#page-8-0)

Magnetic moment and B(M1) rate in 229m Th for different q_R values

Note 1: $\mu_{\mathsf{IS}}^{\mathsf{theo}}$ is obtained with model parameters adjusted (PRL2017) to energy levels and transition rates and not to $\mu_{\text{IS}}^{\text{exp}}$. Here only q_R is varied. **Note 2**: Surprisingly good agreement with $\mu \frac{exp}{|S} = -0.37(6) \mu_N$ is found. **Note 3**: The best agreeing $\mu_{\text{IS}}^{\text{theo}} = -0.347 \ \mu_{N}$ value suggests a smaller $B(M1)_{15} = 0.0056$ W.u. compared to PRL2017 pointing on 229m Th lifetime possibly larger than 10^4 sec.

 \Rightarrow Needs to study additional dependencies which may constraint the isomer decay rates and lifetime suggesting further more precise determination of 229m Th nuclear clock characteristics.

The ^{229m}[Th isomer and the idea of nuclear clock](#page-3-0) **[The 8 eV isomer from a nuclear model perspective](#page-6-0)** Role of the shape in the isom
0000 0000 00000 $\circ\circ\circ\bullet$ 00000

[Magnetic dipole moments](#page-8-0)

Further understanding of the $229m$ Th isomer formation mechanism and properties

- How does the shape dynamics determine the emergence of such a nuclear structure phenomenon as the tiny energy difference between the IS and the GS?
- What is the degree of arbitrariness in the choice of parameters providing the model predictions?
- In which limits the model predictions for the transition rates and magnetic moments vary and could they be further constrained?
- \bullet Is 229m Th a unique phenomenon appearing by chance, or the considered dynamical mechanism could provide the presence of similar not yet observed phenomena in other nuclei?

The 229m [Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) **Role of the shape in the isom**
00000 **0000**

[DSM deformation space and areas of GS-IS quasi-degeneracy](#page-11-0)

²²⁹Th GS and IS K-values in the DSM (β_2, β_3) space

N. Minkov and A. Pálffy, PRC 103, 014313 (2021)

The 229m [Th isomer and the idea of nuclear clock](#page-3-0) [The 8 eV isomer from a nuclear model perspective](#page-6-0) **Role of the shape in the isom**
00000 **0000**

[DSM deformation space and areas of GS-IS quasi-degeneracy](#page-11-0)

GS and IS average parity and IS s.p.&q.p. energy in the DSM (β_2, β_3) space

[Full model fits in the DSM deformation space](#page-13-0)

Model fits in the (β_2, β_3) space: Energy RMS and IS energy.

Full model fits (CQOM and Coriolis strength) to the energy, transition rates and magnetic moments over a net in the DSM (β_2, β_3) space

[Full model fits in the DSM deformation space](#page-13-0)

Model fits in the (β_2, β_3) space: B(M1) and B(E2) IS decay rates.

[Full model fits in the DSM deformation space](#page-13-0)

Model fits in the (β_2, β_3) space: GS and IS magnetic moments.

Concluding remarks

- CQOM+DSM+BCS model analysis: The ²²⁹Th isomer can be formed in rather limited QO deformation space $0.235 < \beta_2 < 0.255$ and $0.11 < \beta_3 < 0.14$. Crucial role of the nonzero octupole deformation.
- \bullet Model description and predictions: \rightarrow Smooth behaviour of the model determined quantities – energy, $B(M1)$ and $B(E2)$ transition rates and magnetic moments within the model deformation space. Rather constrained arbitrariness in the obtained descriptions and predictions.
- O Slight update of model predictions: IS $B(M1) \sim 0.005$ W.u., $B(E2) \sim 30 - 50$ W.u., $\mu_{GS} \sim 0.43 - 0.48$ μ_N , μ _{IS} ~ (−0.35) – (−0.34) μ _N (firmly within exp. uncertainty limits).
- Model mechanism: the fine interplay between nuclear collective and intrinsic degrees of freedom may be a plausible reason for the isomer formation. The same dynamical mechanism may govern also in other nuclei the formation of excitations close to the border of atomic physics energy scale.