The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 00000 00000

Shape and electromagnetic properties of the ^{229m}Th isomer

Nikolay Minkov

Institute of Nuclear Research and Nuclear Energy Bulgarian Academy of Sciences, Sofia, Bulgaria Research Group on Complex Deformed Atomic Nuclei

HINPW6, 14 May 2021

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isome 00000 00000

Collaboration and Support

Collaborator: Adriana Pálffy

Max-Planck-Institut für Kernphysik Heidelberg

and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen

Support:

Deutsche Forschungsgemeinschaft DFG Deutsche Forschungsgemeinschaft

BgNSF (Contract No. KP-06-N48/1)

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom

Contents

1 The ^{229m}Th isomer and the idea of nuclear clock

- 2 The 8 eV isomer from a nuclear model perspective
 - Quadrupole-octupole core plus particle model
 - Energy, decay rate and lifetime prediction
 - Magnetic dipole moments
- Role of the shape in the isomer formation and properties
 DSM deformation space and areas of GS-IS quasi-degeneracy
 Full model fits in the DSM deformation space

Oncluding remarks and perspective

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom

²²⁹Th levels and transitions. ²²⁹*m*Th isomer and nuclear clock.

Advantages vs atomic clocks: better isolation from chem. environment; better frequency stability; higher accuracy: not lag behind / accelerate by more than a second in a period tens of times longer than the age of the Universe.

Possible applications: laser and plasma physics, metrology, geodesy, cosmology, gravitation waves, deep space navigation; ultra-precise chemical analysis etc.

https://en.wikipedia.org/wiki/Nuclear_clock

What do we need to create a ^{229m}Th clock?

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 00000 00000

Need of high precision 229mTh $(3/2^+)$ energy measurement

L. Kroger, C. Reich, NPA1976, E_{IS} < 100eV

D. Burke et al, PRC1990, NPA2008 R. Helmer, C. Reich, PRC1994, *E*_{IS}~3.5eV

 $\begin{array}{l} \label{eq:micro-calorimetric methods:} \\ \mbox{B. Beck et al, PRL$ **98** $, 142501 (2007); \\ \mbox{LLNL-PROC-415170 (2009), $E_{IS} \sim 7.8 eV$ \\ \mbox{A. Yamaguchi et al, PRL$ **123** $, 222501 (2019), \\ \mbox{E}_{IS} = 8.30 \pm 0.92 eV$ \end{array}$

Internal conversion electron (IC) spectroscopy: $E_{IS} = 8.28 \pm 0.17 \text{ eV}$ B. Seiferle et al, Nature **573**, 243 (2019). The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isome oooo

Need of high-precision determination of ^{229m}Th lifetime

L. von der Wense, ..., P. Thirolf et al, Nature **533**, 47 (2016)

Lifetime needed 1) to unambiguously identify/characterize the 229m Th decay; 2) to adjust conditions for the frequency stabilization (laser frequency comb and other methods)

 \Rightarrow need of high-precision determination of B(M1) and B(E2) rates for nuclear $3/2^+_{IS} \rightarrow 5/2^+_{GS}$ transitions

Decay detection and lifetime estimates:

L. von Wense, ..., P. Thirolf et al, Nature **533**, 47 (2016), $\tau(IC)$ (^{229m}Th²⁺) $\gtrsim 60s$ B. Seiferle et al, PRL **118**, 042501 (2017), $\tau(IC)$ (^{229m}Th) = 7 ± 1 μ s Magnetic moment measurement:

J. Thielking, ..., P. Thirolf et al, Nature **556**, 321 (2018), μ (^{229m}Th) = $-0.37(6)\mu_N$ Knowledge of the magnetic dipole moment needed 1) to reduce the ambiguity in the B(M1) and B(E2) transition rates determination; 2) to reveal details of the nuclear microscopic mechanism governing the ^{229m}Th isomer formation.

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective. Role of the shape in the isom 00000

Quadrupole-octupole core plus particle model

Quadrupole-octupole core plus particle model in ²²⁹Th

N. Minkov and A. Pálffy, PRL 118, 212501 (2017) Hamiltonian, spectrum, E/M transition rates $H = H_{quad-oct} + H_{s.p.} + H_{pair} + H_{Coriol}$ $E_{nk}(I^{\pi}, K_b) = \epsilon_{ap}^{K_b} + \hbar\omega [2n + 1 + \sqrt{k^2 + b\widetilde{X}(I^{\pi}, K_b)}]$ $\widetilde{\Psi}_{nklMK_b}^{\pi,\pi^b} = \frac{1}{\widetilde{N}_{l-\nu}} \left[\Psi_{nklMK_b}^{\pi,\pi^b} + A \sum_{\nu \neq b} C_{K_\nu K_b}^{l\pi} \Psi_{nklMK_\nu}^{\pi,\pi^b} \right]$ $\Psi_{nkMK}^{\pi,\pi^{b}} = norm \cdot \Phi_{nkl}^{\pi,\pi^{b}} [D_{MK}^{l} \mathcal{F}_{K}^{(\pi^{b})} + \pi \cdot \pi^{b} (-1)^{l+K} D_{M-K}^{l} \mathcal{F}_{-K}^{(\pi^{b})}]$ $B\begin{pmatrix}E\lambda\\M1\end{pmatrix} = \frac{1}{2l_{i}+1} \left\| \left\langle \widetilde{\Psi}_{n_{f}k_{f}l_{f}K_{f}}^{\pi_{b}} \right\| \left\| \hat{Q}_{\lambda}\right\| \| \widetilde{\Psi}_{n_{i}k_{l}l_{i}K_{i}}^{\pi_{i},\pi^{b_{i}}} \right\|^{2}, \quad \lambda = 1, \ 2, \ 3$ $\hat{M}1 = \sqrt{\frac{3}{4\pi}} \mu_N [g_R(\hat{l} - \hat{j}) + g_s \,\hat{s} + g_l \,\hat{l}], \quad \hat{j} = \hat{l} + \hat{s}, \quad \mu_N = \frac{e\hbar}{2mc}$

N. Minkov and A. Pálffy, PRL 122 162502 (2019) Magnetic dipole moment

 $\mu = \sqrt{\frac{4\pi}{3}} \langle \widetilde{\Psi}_{IIK_h} | \hat{M} \mathbf{1}_z | \widetilde{\Psi}_{IIK_h} \rangle$ Application to ²²⁹Th with: $g_s = q_s \cdot g_s^{free}$ spin gyromagnetic quenching (core polarization effect): $q_s = 0.6$ $g_R = q_R \cdot Z/A$ collective gyromagnetic quenching (pairing effect): $q_R=1.0, 0.8$ (from exp. M1/E2), 0.7 (Nilsson), 0.6 (HF+BCS) The ^{229m}Th isomer and the idea of nuclear clock **The 8 eV isomer from a nuclear model perspective** Role of the shape in the isom 0000 00000

Energy, decay rate and lifetime prediction

²²⁹Th: spectrum description and isomer lifetime prediction

N. Minkov and A. Pálffy, PRL 118, 212501 (2017)

DSM: Ground-state and isomer s.p. orbitals GS(5/2[633]), IS(3/2[631]) Quadrupole and octupole deformations: $\beta_2 = 0.240$, $\beta_3 = 0.115$

⇒ Transition probabilities for the 3/2⁺-isomer decay in ²²⁹Th predicted in the limits: B(E2)=20-30 W.u. B(M1)=0.006-0.008 W.u. ⇒ Predicted ^{229m}Th lifetime of approx. 10⁴ sec. The 229m Th isomer and the idea of nuclear clock **The 8 eV isomer from a nuclear model perspective** Role of the shape in the isometric $^{\circ\circ\circ\circ\circ}$

Magnetic dipole moments

Magnetic moments in the $3/2^+_{IS}$ and $5/2^+_{GS}$ states of ²²⁹Th

N. Minkov and A. Pálffy, PRL 122 162502 (2019)

Theoretical magnetic moments (in μ_N) for different q_R s compared to experiment

μ .	q_R (our work)			other theories		laser spectroscopy				
	1.0	0.8	0.7	0.6	Th77	Th98	Exp74	Exp13	Exp18a	Exp18b
μ_{GS}	0.654	0.591	0.559	0.528	0.54	-	0.46(4)	0.360(7)	-	_
$\mu_{\rm IS}$	-0.253	-0.300	-0.323 -	-0.347	-	-0.076			[-0.3, -0.4]	-0.37(6)

Th77: Modified Woods-Saxon Model, R. Chasman et al, RMP **49**, 833 (1977) Th98: Nilsson Model, A. Dykhne and E. Tkalya, JETP Lett. **67**, 251 (1998) Exp74: S. Gerstenkorn et al., J. Phys. **35**, 483 (1974) Exp13: M. Safronova et al, PRA **88**, 060501(R) (2013) Exp18a: R. Müller et al., PRA **98**, 020503(R) (2018) Exp18b: J. Thielking,..., P.Thirolf, E.Peik, Nature **556**, 321 (2018)

Calculated B(M1) rates (in W.u.) in dependence on q_R (and μ_{IS} , μ_{GS})

Decay		Experiment			
Decay	1.0	0.8	0.7	0.6	[ENDSF]
$3/2^+_{ex} \rightarrow 5/2^+_{vr}$	0.0081	0.0068	0.0062	0.0056	-
$7/2^+_{\rm Vr} \rightarrow 5/2^+_{\rm Vr}$	0.0096	0.0043	0.0025	0.0011	0.0110 (40)
$9/2_{\rm Vr}^+ \rightarrow 7/2_{\rm Vr}^+$	0.0185	0.0097	0.0065	0.0038	0.0076 (12)
$9/2_{yr}^{+} \rightarrow 7/2_{ex}^{+}$	0.0144	0.0147	0.0149	0.0151	0.0117 (14)

The 229m Th isomer and the idea of nuclear clock **The 8 eV isomer from a nuclear model perspective** Role of the shape in the isom 0000

Magnetic dipole moments

Magnetic moment and B(M1) rate in 229m Th for different q_R values

Note 1: μ_{IS}^{theo} is obtained with model parameters adjusted (PRL2017) to energy levels and transition rates and not to μ_{IS}^{exp} . Here only q_R is varied. **Note 2**: Surprisingly good agreement with $\mu_{IS}^{exp} = -0.37(6) \ \mu_N$ is found. **Note 3**: The best agreeing $\mu_{IS}^{theo} = -0.347 \ \mu_N$ value suggests a smaller $B(M1)_{IS} = 0.0056 \ W.u.$ compared to PRL2017 pointing on 229m Th lifetime possibly larger than $10^4 \ sec.$

 \Rightarrow Needs to study additional dependencies which may constraint the isomer decay rates and lifetime suggesting further more precise determination of ^{229m}Th nuclear clock characteristics. The ^{229m}Th isomer and the idea of nuclear clock **The 8 eV isomer from a nuclear model perspective** Role of the shape in the isom

Magnetic dipole moments

Further understanding of the ^{229m}Th isomer formation mechanism and properties

- How does the shape dynamics determine the emergence of such a nuclear structure phenomenon as the tiny energy difference between the IS and the GS?
- What is the degree of arbitrariness in the choice of parameters providing the model predictions?
- In which limits the model predictions for the transition rates and magnetic moments vary and could they be further constrained?
- Is ^{229m}Th a unique phenomenon appearing by chance, or the considered dynamical mechanism could provide the presence of similar not yet observed phenomena in other nuclei?

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isomeono

DSM deformation space and areas of GS-IS quasi-degeneracy

²²⁹Th GS and IS K-values in the DSM (β_2, β_3) space

N. Minkov and A. Pálffy, PRC 103, 014313 (2021)

The 229m Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 0000

DSM deformation space and areas of GS-IS quasi-degeneracy

GS and IS average parity and IS s.p.&q.p. energy in the DSM (β_2, β_3) space

The 229m Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 0000

Full model fits in the DSM deformation space

Model fits in the (β_2, β_3) space: Energy RMS and IS energy.

Full model fits (CQOM and Coriolis strength) to the energy, transition rates and magnetic moments over a net in the DSM (β_2, β_3) space

The 229m Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 00000

Full model fits in the DSM deformation space

Model fits in the (β_2, β_3) space: B(M1) and B(E2) IS decay rates.

The 229m Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 00000

Full model fits in the DSM deformation space

Model fits in the (β_2, β_3) space: GS and IS magnetic moments.

The ^{229m}Th isomer and the idea of nuclear clock The 8 eV isomer from a nuclear model perspective Role of the shape in the isom 00000 00000

Concluding remarks

- CQOM+DSM+BCS model analysis: The ²²⁹Th isomer can be formed in rather limited QO deformation space $0.235 \le \beta_2 \le 0.255$ and $0.11 \le \beta_3 \le 0.14$. Crucial role of the nonzero octupole deformation.
- Model description and predictions: → Smooth behaviour of the model determined quantities – energy, B(M1) and B(E2) transition rates and magnetic moments within the model deformation space. Rather constrained arbitrariness in the obtained descriptions and predictions.
- Slight update of model predictions: IS $B(M1) \sim 0.005$ W.u., $B(E2) \sim 30 - 50$ W.u., $\mu_{GS} \sim 0.43 - 0.48 \mu_N$, $\mu_{IS} \sim (-0.35) - (-0.34) \mu_N$ (firmly within exp. uncertainty limits).
- Model mechanism: the fine interplay between nuclear collective and intrinsic degrees of freedom may be a plausible reason for the isomer formation. The same dynamical mechanism may govern also in other nuclei the formation of excitations close to the border of atomic physics energy scale.