Neutrino Physics and Dark Matter at IEAP CTU

Ivan Štekl Institute of Experimental and Applied Physics Czech Technical University in Prague

IEAP CTU was found in 2002 as a scientific and educational institute of the CTU in Prague, focusing on a research in the field of particle and subatomic physics performed in an international experiments (at present, 98 people)

- Neutrino physics (ββ experiments SuperNEMO, TGV, excited states, LEGEND)
- 2) Dark matter (experiment PICO)
- 3) Ultra-low background techniques
- Research activities of IEAP CTU:
- (1) LHC at CERN experiments ATLAS, MoEDAL (magnetic monopole)
- Neutrino physics ββ decay of ¹⁰⁶Cd, ⁸²Se, ⁷⁶Ge (TGV, SuperNEMO, LEGEND), detection of atmospheric neutrinos (Baikal-GVD)
- (3) Dark matter (neutralino) experiment PICO in SNOLAB (Canada)
- (4) Detection of cosmic rays Timepix detectors on ISS, satellites Proba-V, RISESAT
- (5) Structure of atomic nuclei and nuclear reactions
- (6) Applications pixel and strip detectors, imaging (X-rays and neutrons), biomedicine, study of material.....

Nuclear double-β decay (even-even nuclei, pairing int.)

> **Two-neutrino double-** β decay – LN conserved (A,Z) \rightarrow (A,Z+2) + e⁻ + e⁻ + v_e + v_e Goepert-Mayer – 1935. 1st observation in 1987

Nuovo Cim. 14, 322 (1937) Phys. Rev. 56, 1184 (1939)

Neutrinoless double- β decay – LN violated (A,Z) \rightarrow (A,Z+2) + e⁻ + e⁻ (Furry 1937) Not observed yet. Requires massive Majorana v's

The observation of neutrino oscillations has opened a new excited era in neutrino physics and represents a big step forward in our knowledge of neutrino properties

After 90/64 years we know

- 3 families of light (V-A) neutrinos:
 ν_e, ν_u, ν_τ
- v are massive: we know mass squared differences
- relation between flavor states and mass states (neutrino mixing)

No answer yet

Phys. Rev. 48, 512 (1935)

- Are v Dirac or Majorana?
 Is there a CP violation in v sector?
- Are neutrinos stable?
- What is the magnetic moment of v?
- Sterile neutrinos?

Currently main issue

Nature, Mass hierarchy, CP-properties, sterile v

Two neutrino double beta decay $(2\nu\beta\beta)$:

Direct measurement of NME values \Rightarrow nuclear theory

Very important to measure $\beta\beta$ decay for many nuclei, for different processes (2 β ⁻, 2 β ⁺, EC/EC, excited states....)

 $2\nu\beta\beta$ process has been detected for 11 isotopes

Nucleus	Average value of T _{1/2} [y]	Nucleus	Average value of T _{1/2} [y]
⁴⁸ Ca	$(5.3^{+1.2}_{-0.8}) \ge 10^{19}$	100 Mo $-^{100}$ Ru (0 ⁺ ₁)	$(6.7^{+0.5}_{-0.4}) \ge 10^{20}$
⁷⁶ Ge	$(1.88 \pm 0.08) \ge 10^{21}$	150 Nd $-^{150}$ Sm (0 ⁺ ₁)	$(1.2^{+0.3}_{-0.2}) \ge 10^{20}$
⁸² Se	$0.87^{+0.02}_{-0.01} \ge 10^{20}$	78 Kr 2K(2v)	$(1.9^{+1.3}_{-0.8}) \ge 10^{22}$
⁹⁶ Zr	$(2.3\pm0.2) \ge 10^{19}$	124 Xe 2K(2v)	(1.8±0.5) x 10 ²²
¹⁰⁰ Mo	$7.06^{+0.15}_{-0.13} \ge 10^{18}$		
¹¹⁶ Cd	(2.69±0.09) x 10 ¹⁹		
¹²⁸ Te	$(2.25\pm0.09) \ge 10^{24}$		
¹³⁰ Te	$(7.91\pm0,21) \ge 10^{20}$		
¹³⁶ Xe	$(2.18\pm0,05) \ge 10^{21}$		
¹⁵⁰ Nd	(9.34±0,65) x 10 ¹⁸		
²³⁸ U	(2.0±0.6) x 10 ²¹ (radiochem.)		
¹³⁰ Ba (2vEC/EC)	$(2.2\pm0.5) \ge 10^{21}$ (geochem.)	A.S. Barabash, Precis Two-Neutrino Double	se Half-Life Values for e-β Decay: 2020 review.

arXiv: 2009.14451v1

Experimental sensitivity and traditional picture of 0\nu\beta\beta

U_{ei}

e

$T_{1/2} = \frac{\varepsilon}{W} F_a \sqrt{\frac{N}{B}}$ Candidates with Q _{2β} (natural γ rays < 2,62 6 gold, 5 silver isoto	$\frac{1}{\Delta E}$ > 2 MeV 15 MeV) opes	$\varepsilon = detectionsW = atomFa = isotopM = sourcet = exposureB = backg\Delta E = energy$	on efficiency ic mass pical abundance e mass are time round gy resolution			(A,Z) -	→ (A,Z	Z+2) + e⁻ - Phase fact ell undersi	+ e⁻ or tood
Nuclei	<mark>Q</mark> _{2β} , keV		Abundance, %	('	$(\Gamma_{1/2}^{0\nu})^{-1}$	$=$ $m_{\beta\beta}$	$\begin{vmatrix} 2 \\ a^4 \end{vmatrix}$	$\left M^{0\nu} \right ^2$	$\dot{\gamma}^{0\nu}$
1. ⁴⁸ Ca	4272		0.187	([•] 1/2)	n_e	$ g_A$?	$ \mathcal{M}_{\nu} \ll$	
2. ¹⁵⁰ Nd 3. ⁹⁶ Zr	3371.4 3350		5.6			NME	must b	e evaluate	d
4. ¹⁰⁰ Mo	3034.4		9.63			using to	ols of r	uclear the	eory
5. ⁸² Se	2996		8.73						
6. ¹¹⁶ Cd	2805		7.49	m	$_{\beta\beta} =$				
7. ¹³⁰ Te	2527.5		34.08	c^2	$c_{12}^2 c_{12}^2 e^{i\alpha}$	$m_1 + c_1^2$	$s_1^2 e^{i\mathbf{c}}$	$n_{2}m_{2} + s_{1}^{2}$	m_{2}
8. ¹³⁶ Xe	2458.7		8.87		130120	<i>m</i> 1 + 01	30120	110 <u>7</u> 1 0 <u>1</u>	31103
9. ¹²⁴ Sn	2287		5.79		"No	ormal"		"Inverted"	
10. ⁷⁰ Ge	2039.0		7.61		3		2	Δm_{12}^2	
$\frac{11. \text{ PC}}{n} = \frac{1}{v} = \overline{v}$	2000		11.72	,	$\Delta m_{23}^{2} =$ $\Delta m_{12}^{2} =$ 1	= 7.4 x 10 ⁻⁵ eV ²	ν _e ν _μ ν _τ	Δm_{23}^2	

2

Needs to be resolved

?

Both $2\nu\beta\beta$ and $0\nu\beta\beta$ operators connect the same states. Both change two neutrons into two protons. Explaining $2\nu\beta\beta$ -decay is necessary but not sufficient

2004 (factor 10) few groups, 2 nuclear structure methods: Nuclear Shell Model, QRPA

2019 (factor 2-3)

many groups, many nuclear structure methods: Nuclear Shell Model, QRPA, Interacting Boson Model, Energy Density Functional

Attempts (light nuclear systems): Calculations by different approaches – No Core Shell Model, Green's Function Monte Carlo, Coupled Cluster Method, Lattice QCD

Conference MEDEX (NME calculations) – every two years organized on CTU (J. Suhonen, O. Civitarese, I. Štekl, R. Hodák)

Nuclear Shell Model (Madrid-Strasbourg, Michigan, Tokyo): Relatively small model space (1 shell), all correlations included, solved by direct diagonalization *QRPA* (Tuebingen-Bratislava-Caltech, Jyvaskyla, Chapel Hill, Lanzhou, Prague): Several

shells, only simple correlations included

Interacting Boson Method (Yale-Concepcion): Small space, important proton-neutron pairing correlations missing

0vββ decay

NMEs

Energy Density Functional theory (Madrid, Beijing): >10 shells, important proton-neutron pairing missing

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	$\sim ton$	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact with active veto	~ ton	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
LUMINEU (CUPID)	Mo-100	ZnMoO4 / Li2MoO4 scint. bolometer	1.5 - 5 kg	R&D
COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid seint.	380 kg	Complete
KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
PandaX - III	Xe-136	High pressure Xe TPC	\sim ton	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

Exposure [ton-years]

Estimated KATRIN Sensitivity

<u>IEAP CTU in ββ experiments:</u>

- 1) **NEMO3:** 10 kg of $\beta\beta$ isotopes, tracko-calo technique, headed by French institutions, in LSM
- 2) **SuperNEMO:** demonstrator (6,2 kg of ⁸²Se), expected start of running mid 2022, in LSM
- 3) TGV : 2vEC/EC decay of ¹⁰⁶Cd (JINR/LSM/IEAP), in LSM
- 4) **LEGEND:** $0\nu\beta\beta$ of ⁷⁶Ge (broad international cooperation, USA, Germany.....)
- 5) Excited states of $\beta\beta$ decay: ultra-low background HPGe detectors, in LSM

Isotope	Half-life (10 ¹⁹ years)	S/B	Reference
⁸² Se	9.39 ± 0.08	4	Eur. Phys. J. C78, 821 (2018)
¹¹⁶ Cd	2.74 ± 0.18	12	Phys. Rev. D 95, 012007
¹⁵⁰ Nd	0.93 ± 0.06	4	Phys. Rev. D 94, 072003
⁹⁶ Zr	2.35 ± 0.21	1	Nucl.Phys.A 847(2010) 168
⁴⁸ Ca	6.4 ± 1.2	3.9	Phys. Rev. D 93, 112008
¹⁰⁰ Mo	0.68 ± 0.4	80	Eur.Phys. J. C79,440 (2019)
¹³⁰ Te	70 ± 14	1/3	Phys. Rev. Lett. 107, 062504

Measurement of tracks and energies of both electrons (distinguishing of mass mechanism)

SuperNEMO Demonstrator Module

35 tons

Background reduction and rejection

1kg of bananas

100 Bq (decays/sec)

SuperNEMO	
⁸² Se	
100 - 200 kg	
> 30 %	
²⁰⁸ Tl ~ 2 μBq/kg ²¹⁴ Bi < 10 μBq/kg Rn ≤ 0.2 mBq/kg	
~ 8 % @ 1 MeV	
$T_{\frac{1}{2}}(0v\beta\beta) > 1 \times 10^{26} \text{ y}$ $(m_{1}) < (0.04 - 0.11) \text{ eV}$	

Experiment TGV – search for double beta decay of ¹⁰⁶Cd

JINR Dubna, IEAP CTU, CU Bratislava, LSM Phase III: ~ 23.2 g of 106 Cd (99.57%) (~ 1.3 x 10²³ atoms of 106 Cd) (Feb.2014 –) in progress, T >40000 h

Theoretical $T_{1/2} (2\nu EC/EC) \sim 10^{20} - 10^{22}$ years

 $\frac{\text{Preliminary result for 2vEC/EC, 0+g.s. (Phase III):}}{5.3 \times 10^{20} < T_{1/2} < 3.5 \times 10^{21} \text{ years}}$

 $\begin{array}{l} \mbox{EC/EC} \ 2e_b\mbox{-} + \ {}^{106}\mbox{Cd} \rightarrow {}^{106}\mbox{Pd} + (2\nu_e) + (\gamma) \\ \mbox{Observables: } 2KXPd \ (+ \ \gamma \ for \ e.s.) \\ \mbox{\beta^{+}/EC} \ e_b\mbox{-} + \ {}^{106}\mbox{Cd} \rightarrow {}^{106}\mbox{Pd} + e\mbox{+} + (2\nu_e) + (\gamma) \\ \mbox{Observables: } KXPd \ + 2\gamma \ 511 \ (+ \ \gamma \ for \ e.s.) \\ \mbox{\beta^{+}\beta^{+}} \ {}^{106}\mbox{Cd} \rightarrow {}^{106}\mbox{Pd} + e\mbox{+} + e\mbox{+} + (2\nu_e) + (\gamma) \\ \mbox{Observables: } 4\gamma \ 511 \ (+ \ \gamma \ for \ e.s.) \end{array}$

PASSIVE SHIELDING

Detector "Obelix" (JINR/IEAP CTU/LSM) – excited states of $2\nu\beta\beta$

P type coaxial HPGe detector (U-type ultra low background cryostat located at LSM (4800 m w.e.) Sensitive volume 600 cm³ Efficiency 162% Energy resolution ~1.2 keV at 122 keV (⁵⁷Co), ~2 keV at 1332 keV (⁶⁰Co) 12 cm of arch. Pb, 20 cm of low active Pb, Radon free air

Mass of ¹⁰⁰Mo – 2517,15 g Measurement time – 2288 h

 $\frac{2\nu\beta\beta}{^{5}}^{100}Mo \to 0^{+},\,1130~keV~^{100}Ru$ 590.8+539.5 keV*

Experiment LEGEND (47 institutions, ~ 240 scientists)

- next generation of ⁷⁶Ge-based double-beta decay experiment
- LEGEND-200 (200 kg of ⁷⁶Ge, (LNGS): discovery potential $T_{1/2} \sim 10^{27}$ years
- LEGEND-1000 (one-tonne of enriched germanium): discovery potential $T_{1/2}$ beyond 10^{28} years.

HPGe detectors (p-type, inverted-coaxial point contact, 80 detectors, 1.5-2kg) deployed in an active liquid argon shield at a deep underground location.

Why germanium detectors? High detection efficiency (source = detector); isotope enrichment from 7.7% to > 92%; excellent energy resolution at $Q_{\beta\beta}$ -value (0.1% at 2039 keV, suppress 2v $\beta\beta$ continuum); high density material ($\beta\beta$ event point-like, backgrounds can be discriminated), stable long-term operation with minimal maintenance

LEGEND-200

- •Existing GERDA infrastructure at LNGS
- •Upgrade to 200 kg of germanium
- •Background goal (reduction by factor >2 relative to GERDA/MAJORANA:
- < 2 x 10⁻⁴cts/ (keV · kg ·yr)
- < 0.6 cts/ (FWHM·t ·yr)
- •Sensitivity goal:
- $T_{1/2}0\nu > 10^{27} \mathrm{yr}$
- •Start data taking in 2021

LEGEND-1000

•1000 kg of germanium (staged) •Background goal: <1 x 10⁻⁵cts/ (keV \cdot kg \cdot yr) < 0.03 cts/ (FWHM \cdot t \cdot yr) •Sensitivity goal: $T_{1/2}0\nu > 10^{28}$ yr •Location to be selected

UNIVERSITAT

POLITÈCNICA DE VALÈNCIA

M. Ardid, M. Bou-Cabo, I. Felis

🛟 Fermilab

P.S. Cooper, M. Crisler,

Drexel

M. Bressler, R. Neilson

Northeastern

R. Filgas, I. Stekl

F. Flores, A. Gonzalez, E. Noriega-Benítez, E. Vázquez-Jáuregui

Kavli Institute for Cosmological Physics at The University of Chicago

D. Baxter, J.I. Collar, J. Fuentes

J. Farine, A. Le Blanc, T. Hillier, C. Licciardi, O. Scallon, U. Wichoski

Wight have a company of

L Lawson

B. Broerman, G. Cao, K. Clark, G. Giroux, C. Hardy, H. Herrera, C. Moore, A. Noble, T. Sullivan

Université 🍈

S. Chen, M. Laurin,

de Montréal

C. Coutu, N.A. Cruz-Venegas, S. Fallows, T. Kozynets, C. Krauss, S. Pal, M.-C. Piro, W. Woodley

INDIANA UNIVERSITY SOUTH BEND K. Allen, E. Behnke,

I. Levine.

J.-P. Martin, A.E. Robinson, N. Starinski, D. Tiwari, N. Walkowski, A. Weesner V. Zacek, C. Wen Chao,

I. Arnquist, T. Grimes, B. Hackett, A. Hagen, C.M. Jackson, K. Kadooka, B. Loer

What is Dark Matter (question from 1930 by astronomers, galaxies need invisible gravitational glue)?

Does not interact strongly (no classic atoms) or electromagnetically (dark), only weak and gravitational interaction Different candidates: WIMP (proposed 1985, mass 1-1000 GeV), Axion (proposed 1977, tiny mass), Sterile neutrino (proposed late 1970s, mass ~ 1 GeV), SIMP (proposed 2014, mass 0,1 GeV) In Supersymmetry WIMP = neutralino (majorana, massive, stable)

<u>Detection:</u> Indirect – neutrinos & gammas from WIMP annihilation Direct – scattering of WIMPs off atomic nuclei within a detector

Different technologies:

a) Cryogenic – T<100mK, detect heat produced when WIMP hits atom in crystal absorber (Ge)

b) Scintillation – detect scintillation light produced by WIMP collision in liquid noble gases (Xe, Ar)

c) Bubble detectors – detect phase transition in superheated liquids,

Different experiments: XENON1T, SuperCMDS, ADMX, PICO.....

<u>PICO:</u> located at SNOLAB, series of experiment PICO 2L, PICO-60 (room temperature, cheap detection medium) PICO 40L (technology demonstrator for PICO 500)

Advantages: insensitive to electron and gammas easily scalable to large sizes at reasonable cost excellent spin dependent sensitivity

Drawbacks: threshold detectors (lack of direct energy measurement) sensitive to alpha radiation

Operational Principle

- Superheated liquid detector based on bubble chamber (C₃F₈)
- If sufficient energy is deposited within minimal radius directly or via nuclear recoil:
- Phase transition occurs and a bubble is formed
- The explosion is measured acoustically or by camera
- Threshold detector, dependent on temperature

Projected 90% C.L. spin-dependent WIMP-proton exclusion for PICO-40L (2 expected backgr. events, 2.8 keV threshold with 1.64 x 10⁴ kg.days exposure).

Limits: background from elastic solar neutrino-nucleus scattering

Selected low background technologies for detection of rare events

How to remove radon from air? Radon trapping on charcoal => Radon decays during trapping : reduction factor 100 => "retention time" T = 606 hours (~ 25 days)

T (hours) = K (m^{3}/kg) * m (kg) / f ($m^{3}/hour$)

- T retention time of Radon in charcoal
- K depends on charcoal type, temperature, pressure
- m mass of charcoal
- f flux of gas

Dependence of K on temperature (Jose Busto, CPPM):

t (°C)	20	0	-30	-40	-50	-60
K(m ³ /kg)	4	12	53	78	152	272

Various	Sanders	SC44	Silcarbon	Silcarbon	Silcarbon
charcoals			C46	K48	K847
K [m ³ /kg] at -40 °C	65	46	95	141	66

- A(²²²Rn) in LSM ~ 10-15 Bq/m³
- Antiradon setup: starts running Oct. 2004
- 500 kg charcoal @ -50°C, 10 bars
- Activity: A(²²²Rn) < 10 mBq/m³ !!! Flux: 130 m³/h (produced by ATEKO company, Czech Republic) LNGS, Korea, Jin Ping, USA
- Air flow 20 300 m³/h Input radon concentration 20 - 100 Bq/m³ Reduction of radon concentration 100 - 1000 Output air humidity -70°C

Free-Radon Air factory

Low Rn clean room in LSM (ISO 5, zero-dose environment for biology):

- Clean room with highly suppressed radon was installed in LSM
- Suppression of all types of radioactivity (including Radon) for biological studies

Radon activities in LSM (red dots) and inside clean room with the source of radon-free air from anti-radon facility (blue dots). Average radon activity in LSM is around 12-13 Bq/m³, while in low Rn clean room it is suppressed below the detection limit of used Rn detector (less than 20 mBq/m³).

Thank You!

We are at the beginning of the Beyond Standard Model Road...

Thanks a lot for your attention

unquenched g_A

uncertainties