

Advancing Research in Texas through Experiments in Medical Isotope Science Sherry Yennello Texas A&M University

Texas A&M Cyclotron Institute and Nuclear Science and Engineering Center

Annual Report to the Nation 2020 seer.cancer.gov

Radiation Drugs: emerging as cancer therapy

Radiopharmaceuticals consist of a radioactive molecule, a targeting molecule, and a linker that joins the two.

Credit: National Cancer Institute

Curing Cancer from the Inside: The Promise of Targeted Alpha Therapy

PSA = 2,923 ng/mL

7/2015 PSA = 0.26 ng/mL

9/2015 PSA < 0.1 ng/mL

68Ga-PSMA-11 PET/CT scans of patient A. Pretherapeutic tumor spread (A), restaging 2 mo after third cycle of 225Ac-PSMA-617 (B), and restaging 2 mo after one additional consolidation therapy (C). Clemens Kratochwil et al. J Nucl Med 2016;57:1941-1944

Copyright © Society of Nuclear Medicine and Molecular Imaging

The goal is kill more cancer cells than healthy cells

Figure 2. Relative Alpha Particle vs Beta Particle Emission Range in Tissue

JAMA Oncol. doi:10.1001/jamaoncol.2018.4044 Published online September 20, 2018

Alpha-Emitting Radionuclides Investigated for Targeted Alpha Therapy

• Tb-149;
$$t_{1/2}$$
 = 4.12 h; α = 4077 keV; β^+ , γ = 352 keV

• At-211;
$$t_{1/2}$$
 = 7.21 h; α = 5867 keV; γ = 79 keV

• Bi-212; $t_{1/2}$ = 60.6 min; α = 8785 keV; γ = 727 keV

• Bi-213; $t_{1/2}$ = 45.7 min; α = 8378 keV; γ = 440 keV

- Ra-223; $t_{1/2}$ = 11.4 d; α_{avg} = 5348 keV; γ = 269 keV
- Ra-224; $t_{1/2}$ = 3.62 d; α_{avg} = 5094 keV; γ = 241 keV
- Ac-225; $t_{1/2}$ = 10.0 d; α_{avg} = 5450 keV; γ = 86 keV
- Th-226; $t_{1/2}$ = 30.9 min; α (75%) = 6338 keV; γ = 111 keV (3%)
- Th-227; $t_{1/2}$ = 18.7 d; α_{avg} = 5562 keV; γ = 236 keV (11.5%)
- Fm-255; $t_{1/2}$ = 20.1 h; α = 7022 keV; γ = 16 keV

Review: D.S. Wilbur, Current Radiopharmaceuticals 4, 214-247, 2011

⁸¹TI

Thallium

113Nh

TTNA.

82

114

Pb

Lead.

FI

1000

Flerovium

84

116

Po

Lv

Paloptum

At

Astatine

Ts

ennessin

Rn

Radon

8 URLAN

Og

ganesson

83

115

Bi

Bismuth

Mc

Moscovium

M.R. Zalutsky, M. Paruszynski, *Curr. Radiopharm.*, 4(3), 117-185, 2020.

Isotope Production University Network

https://www.isotopes.gov/production-network

At-211 Program at Texas A&M

Productio

209 Bi + lpha -

- K150 Cyclotron
- Energy: 28.8 MeV

Alpha Beam

- 28.8 MeV, from K150
- Maximize At-211
- +1 charge state

M.R. Zalutsky, M. Paruszynski, *Curr. Radiopharm.*, 4(3), 117-185, 2020.

Original Target Mechanism

- Loosely based on UW Target Design
- Chilled water in cooling block (Bi mp: 271.4C)
- Thermal paste between frame and block
- Target 10° from beam
- Thermocouple

Flange

Beam Uniformity

• 37 Faraday Cups, 5 s read time

Overnight Bombardment

Current on Target 12/15-16/20

²¹¹At

Target Extraction

- ALARA
- Air Testing

Dissolution, Separation, Chemistry

J.D. Burns, *et al.*, *Chem. Commun.*, **56**, 9004-9007, 2020. J.D. Burns, *et al.*, *J. Sep. Pur.*, **256**, 117794, 2021.

Bombardments

Irradiations	Highest Instantaneous Beam Current (pµA)	Average Beam Current (pμA)	Irradiation Length (h)	At-211 Activity at EoB (mCi)
December 2019	4.4	3	8	24 ± 2
March 2020	3.5	3	9	41 ± 3
June 2020	4.5	2 (Unstable)	9	8.0 ± 1.3
August 2020	2.6	2	9	21 ± 2
September 2020	7.4	5	7	22 ± 2
October 2020	5	4	8	12 ± 1
November 2020	7.2	4	10	24 ± 2
December 2020	6.8	45	14	47 ± 5
April 2021	7.8	6	13	17 ± 2

Radiochemistry Facilities

At-211 Recovery and Purification

Liquid-Liquid Extraction Experimental Methods

E. E. Tereshatov, et. al., Green Chem., 18, 4616 (2016).

E. E. Tereshatov et. al., J. Phys. Chem. B, 120, 9, 2311 (2016).

Extraction of bismuth from nitric acid media using 1-octanol (Amy L. Vonder Haar)

C. Ekberg, H. Jensen, S. P. Mezyk, B. J. Mincher, and G. Skarnemark, J. Radioanal. Nucl. Chem., 314, 235 (2017). NSSPI-13-037

At-211 Separations

Solvent	Dielectric Constant
methyl isobutyl ketone	13.11
3-octanone	10.5
1-octanol	10.3
1-decanol	7.93
Diisopropyl ether	3.81

Burns et al, Chemical Communications, 2020

Burns et al, Chemical Communications, 2020

Hydrophobic Liquid Binary Mixtures

- Green chemistry: nonvolatile, reduced toxicity, biodegradable
- A new form of organic solvent – never before used with Bi or At

J. M. Edgecomb, et. al., Green Chem., 22, 7047 (2020).

Current Chemistry in Progress

- Exploration of ²¹¹At oxidation state (extracting with oxidizing, reducing agents)
- Continuing to probe organic solvents
- Beginning investigation with liquid binary mixtures as extraction solvent (ibuprofen, lidocaine, methyl anthranilate)
- Work in preliminary stages

Developing At-211 For Treatment Osteoarthritis

Ligand Exchange Experiments

Osteoarthritis

DFT Calculations to understand the interactions

Expanding the Toolbox of Medical Radioisotopes

- Theranostic Isotopes label the same drug with an isotope for therapy and diagnostic imaging – "see and treat" approach
- Terbium β^+/α : Matched isotopes for PET imaging and therapy
 - 1) ¹⁴⁹Tb ($t_{1/2}$ = 4.12 h) decays by positron emission and α -decay
 - 2) ^{151/152}Tb longer

Stable chelation chemistry and initial studies using Tb from spallation are promising

EJNMMI Radiopharm Chem. 2017; 1(1): 5.

TEXAS A&M

A M

Terbium-149

- 140 MeV ¹⁴N + Pr_6O_{11} , $CeO_2 \rightarrow Lots of ^{149m}Tb$
- 258 MeV ⁶³Cu + ⁸⁹Y

14N (140MeV) on 141Pr (30µm foil)

Knowledge that will change your world

Advancing Research in Texas through Experiments in Medical Isotope Science (ARTEMIS)

- Starting with astatine for therapy by release of alpha particle (28.8 MeV α-beam, K150)
- ${}^{209}\text{Bi}(\alpha, 2n)^{211}\text{At}$
- ²¹¹At half life: 7.2 h

- Metallic Bi target
 Dissolve irradiated target in HNO₃
- Analyze samples using high-purity germanium detector (HPGe)
- <u>Challenges</u>: producing enough ²¹¹At, efficient chemistry, isolating ²¹¹At from bismuth target (extraction/separation)
- Investigating reactions of other possible interesting isotopes

Jon Burns, Lauren McIntosh, Evgeny Tereshatov, Gabi Tabacaru, Amy Vonder Haar, Laura McCann, Kylie Loftin, Steve Schultz, Dan Menchaca, M.B. Hall, X. Yang

Acknowledgments

- Geoff Avila, Kendall Barrett¹, Jon Engle¹, Sam Ferran², Andy Hannaman, Ashley Hood, Suzy Lapi², Mallory McCarthy, Sean McGuinness³, Graham Peaslee³, John Wilkinson³
 - 1: University of Wisconsin-Madison
 - 2: University of Alabama-Birmingham
 - 3: University of Notre Dame
- Cyclotron Operations & Rad Safety Staff
- Texas A&M University System National Laboratories Office
- Los Alamos National Laboratory
- Isotope Program: DE-SC0020958
- DOE: DE-FG02-93ER40773
- NNSA Grant: NA-DE0003841
- TEES
- Bright Chair at TAMU
- T3 Grant from TAMU
- NSF GRFP (L. McCann)

Office of Science

Question?

