

HINPw6 workshop University of Athens- zoom conference 14-16 May 2021

Searching for "treasures" at subbarrier energies : the case of ⁸B and ⁷Be

Athena Pakou Department of Physics and HINP, The University of Ioannina

UNIVERSITY OF IOANNINA

Physics Departmen

- Introduction-motivation
- Previous studies
- Our study with ⁸B+²⁰⁸Pb at deep sub-barrier energies
- Recent analysis for ⁷Be+²⁰⁸Pb at deep sub-barrier energies

Key aspects indicating the hidden wealth of information below barrier

> Coupling channel effects visualized with an unusual behavior of the energy dependence for the optical potential

Enhancement of fusion below barrier – or fusion hindrance at deep sub-barrier energies?? Optical potential for ¹²C+²⁰⁹Bi; the energy dependence; Coupling channel effects at near and sub-barrier energies and the optical potential threshold anomaly

optical potential threshold anomaly for weakly bound projectiles

Previous information

1.5 6Li+208Pb 7Li+208Pb 1 Nreal 0.5 0 1.2 2.2 2.4 1.8 2 1.4 1.6 1.5 Nimag 1 0.5 0 1.2 1.4 1.6 1.8 2.2 2.4 2 E/V_{barrier}

PHYSICAL REVIEW C 69, 054602 (2004)

More recent information

Data from Refs. By Keeley et al and Martel et al. NPA571,326(1994). NPA582,357(1995)

At what energy the potential drops: backscattering technique

From Zerva et al. EPJA 48,102(2012)

	$E_{c.m.}$ (MeV)	$\sigma_T(\mathrm{mb})$	$\sigma_F(\mathrm{mb})$
	4.94	18 ± 3	$2.3 \pm 0.4 (4.3)$
Unfolding the enigma of fusion at sub- and near-barrier energies	5.35	$43~\pm~7$	$8.6{\pm}1.4(9.6)$
for the system ⁶ Li+ ²⁸ Si	5.5	$47~\pm~5$	$11.3 \pm 1.4 (8.3)$
A. Pakou [*] , ¹ K. Rusek, ² N. Alamanos, ³ X. Aslanoglou, ¹ M. Kokkoris, ⁴	5.76	55 ± 6	$17 \pm 2(8)$
A. Lagoyannis, 5 ${\rm T.}$ J. Mertzimekis, 1 ${\rm A.}$ Musumarra, 6 ${\rm N.}$ G. Nicolis, 1 ${\rm }$	6.18	98 ± 10	$42 \pm 4(13)$
C. Papachristodoulou, ¹ D. Pierroutsakou, ⁷ and D. Roubos ¹	6.5	210 ± 21	$107 \pm 11(26)$
¹ Department of Physics, The University of Ioannina, 45110 Ioannina, GREECE ² Department of Nuclear Reactions. The Andreei Seltan Institute for Nuclear Studies	7.2	325 ± 33	$211 \pm 22(37)$
Hoża 69, 00-681 Warsaw, POLAND	7.41	345 ± 35	$238 \pm 24(38)$
³ DSM/DAPNIA CEA SACLAY, 91191 Gif-sur-Yvette, FRANCE	8.23	493 ± 50	$375 \pm 38(53)$
⁴ National Technical University of Athens-GREECE ⁵ National Research Center Demokritos-GREECE	9.05	$670\ \pm70$	$524 \pm 55(73)$
⁶ Dipartimento di Metodologie Fisiche e Chimiche	10.54	$930{\pm}100$	$730{\pm}80(103)$
per l'Ingegneria dell'Universita di Catania, ITALY	10.7	1000 ± 120	$800 \pm 96(124)$
⁷ INFN Sezione di Napoli, I-80125, Napoli, ITALY	12.2	1112 ± 122	$890 \pm 98(126)$
(Dated: November 23, 2007)	12.4	$1168 {\pm} 130$	934±104(135)
or ⁷ Li+²8Si- similar work published in ° JA39,187(2009)	13.2	1300 ± 150	$1040 \pm 120(155)$

Fission is used as a tracer of fusion

M Trotta et al, PRL84,2342(2000)

R. Raabe et al., Nature 431,823(2004)

N. Keeley, R. Raabe, N. Alamanos, J.L. Sida; Progress in Nuclear Physics 59, 579 (2007).

Fusion 8He + 197Au

Fig. 2. (a) Cross sections for evaporation residues as

Zamora et al; Phys. Lett. B 816, 136256(2021).

Reduced fusion for various weakly bound exotic projectiles

Pakou et al, PRC87,014619(2013)

8B+58Ni Notre Dame PRL107,092701(2011)

Two key issues

Predictions of Ratios direct to total reported in Ref: EPJA 51,55 (2015)

CDCC calculations for ⁸B+²⁰⁸Pb, reported in Ref Prog.Part. Nucl. Phys. 63, 396 (2009)

Paulo Gomes Rev. C 71, 017601 (2005).

F(x) reduced total reaction cross section F(0) reduced fusion cross section

Reduction based to the Wong cross section

$$\sigma_{\rm F}^{\rm W} = R_{\rm B}^2 \, \frac{\hbar\omega}{2E_{\rm c.m.}} \, \ln\left[1 + \exp\left(\frac{2\pi(E_{\rm c.m.} - V_{\rm B})}{\hbar\omega}\right)\right],$$

$$\sigma_{\rm F} \to F(x) = \frac{2E_{\rm c.m.}}{\hbar\omega R_{\rm B}^2}\sigma_{\rm F},$$

$$R = \frac{F(x) - F(0)}{F(x)}$$

BREAKUP of ⁸**B+**²⁰⁸**Pb**

Is it really low this energy at 30 MeV ??

Distance of closest approach

TAC

ENERGY

Phys. Rev. C 102, 031601(R)(2020)

$$\sigma_{break}$$
=325±84 mb

 $\begin{array}{l} \sigma_{\text{break}} = 300 \text{mb} \\ \Sigma_{\text{tot}} = 316 \text{mb} \end{array}$

the lack of measured total reaction cross section value does not allow the confirmation of a fusion hindrance

⁷Be+²⁰⁸Pb at 22.5 MeV

Data: red dots Simulation : black line breakup, green line 4He(3He)-transfer

Simulation by Angel Santzez Benitez

³He -production

conclusions

■ We have presented a brief review for the observation of strong direct reaction channels at sub and deep sub –barrier energies

■ For ⁸B reacting with the heavy Pb target the dominance of breakup at deep sub-barrier energies is evident and this tops the total reaction cross section according to predictions due to systematic. A fusion hindrance is not however confirmed. Strong boron beams are necessary for a direct fusion measurement

■New results for the production of large ⁴He and ³He yields have been reported. For ⁷Be+²⁰⁸Pb at deep subbarrier energies. For ³He, it is clear that the reaction products are due to ⁴He transfer and not due to elastic breakup

