

```
HINPw6 workshop
University of Athens- zoom conference
14-16 May 2021
```


Searching for "treasures" at subbarrier energies : the case of ${ }^{8} \mathrm{~B}$ and ${ }^{7} \mathrm{Be}$

Athena Pakou
Department of Physics and HINP, The University
of Ioannina

LAY out

- Introduction-motivation
- Previous studies
- Our study with ${ }^{8} \mathrm{~B}+{ }^{208} \mathrm{~Pb}$ at deep sub-barrier energies
- Recent analysis for ${ }^{7} \mathrm{Be}+{ }^{208} \mathrm{~Pb}$ at deep sub-barrier energies

Key aspects indicating the hidden wealth of information below barrier

Coupling channel effects visualized with an unusual behavior of the energy dependence for the optical potential
$>$ Enhancement of fusion below barrier or fusion hindrance at deep sub-barrier energies??

Optical potential for ${ }^{12} \mathrm{C}+{ }^{209} \mathrm{Bi}$; the energy dependence;
Coupling channel effects at near and sub-barrier energies and the optical potential threshold anomaly

Standard behavior for stable projectiles

optical potential threshold anomaly for weakly bound projectiles

Previous information

PHYSICAL REVIEW C 69, 054602 (2004)

More recent information

Vardaci et al; EPJA 57,95(2021)

Data from Refs. By Keeley et al and Martel et al. NPA571,326(1994). NPA582,357(1995)

At what energy the potential drops:
backscattering technique

From Zerva et al. EPJA
48,102(2012)

Fission is used as a tracer of fusion

M Trotta et al, PRL84,2342(2000)
R. Raabe et al., Nature 431,823(2004)
N. Keeley, R. Raabe, N. Alamanos, J.L. Sida;

Progress in Nuclear Physics 59, 579 (2007).

Fusion $8 \mathrm{He}+197 \mathrm{Au}$

Lemasson et al.
PRL103,232701(2009)

Fig. 2. (a) Cross sections for evaporation residues as

Zamora et al; Phys. Lett. B 816, 136256(2021).

Reduced fusion for various weakly bound exotic projectiles

Pakou et al, PRC87,014619(2013)

8B+58Ni
Notre Dame
PRL107,092701(2011)

Two key issues

* Predictions of Ratios direct to total reported in Ref: EPJA 51,55 (2015)

CDCC calculations for ${ }^{8} \mathrm{~B}+{ }^{208 P} \mathrm{~Pb}$, reported in Ref Prog.Part. Nucl. Phys. 63, 396 (2009)

Paulo Gomes

Rev. C 71, 017601 (2005).
$F(x)$ reduced total reaction cross section $F(0)$ reduced fusion cross section

Reduction based to the Wong cross section

$$
\begin{aligned}
\sigma_{\mathrm{F}}^{\mathrm{W}}= & R_{\mathrm{B}}^{2} \frac{\hbar \omega}{2 E_{\mathrm{c} . \mathrm{m} .}} \ln \left[1+\exp \left(\frac{2 \pi\left(E_{\mathrm{c} . \mathrm{m} .}-V_{\mathrm{B}}\right)}{\hbar \omega}\right)\right] \\
& \sigma_{\mathrm{F}} \rightarrow F(x)=\frac{2 E_{\text {c.m. }}}{\hbar \omega R_{\mathrm{B}}^{2}} \sigma_{\mathrm{F}}
\end{aligned}
$$

$$
R=\frac{F(x)-F(0)}{F(x)}
$$

BREAKUP of ${ }^{8} \mathrm{~B}+{ }^{208} \mathrm{~Pb}$

Two telescopes
DE 20 microns
E 150 microns
AT
+- 20 to 70 degrees from

SIMAS (Sistema Mvil de Alta Segmentacin) array of the LEMA (Laboratorio Nacional de Espectrometra de Masas con Aceleradores)

Is it really low this energy at 30 MeV ??

Distance of closest approach

Pakou-Rusek Phys. Rev C

$$
D=d\left(A_{1}^{1 / 3}+A_{2}^{1 / 3}\right)=\frac{1}{2} D_{0}\left(1+\frac{1}{\sin (\theta / 2)}\right)
$$

with

$$
D_{0}=\frac{Z_{1} Z_{2} e^{2}}{E_{\text {c.m. }}}
$$

$0=30$ to 70 deg d= 2.6 to 2.9 fm
$\mathrm{D}=20.5$ to 22.8 fm
To be compared with
R=R1+R2~10fm

ENERGY

Phys. Rev. C 102, 031601(R)(2020)

Direct to total

$$
\sigma_{\text {break }}=325 \pm 84 \mathrm{mb}
$$

$$
\begin{aligned}
& \sigma_{\text {break }}{ }^{\text {cdcc }}=300 \mathrm{mb} \\
& \Sigma_{\text {tot }}^{\text {cdcc }}=316 \mathrm{mb}
\end{aligned}
$$

the lack of measured total reaction cross section value does not allow the confirmation of a fusion hindrance

Data: red dots
Simulation : black line breakup, green line $4 \mathrm{He}(3 \mathrm{He})$-transfer

${ }^{7} \mathrm{Be}+{ }^{208} \mathrm{~Pb}$ at 22.5 MeV

${ }^{4} \mathrm{He}$-production

conclusions

\square We have presented a brief review for the observation of strong direct reaction channels at sub and deep sub -barrier energies
\square For ${ }^{8} \mathrm{~B}$ reacting with the heavy Pb target the dominance of breakup at deep sub-barrier energies is evident and this tops the total reaction cross section according to predictions due to systematic. A fusion hindrance is not however confirmed. Strong boron beams are necessary for a direct fusion measurement

DNew results for the production of large ${ }^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}$ yields have been reported. For ${ }^{7} \mathrm{Be}+{ }^{208} \mathrm{~Pb}$ at deep subbarrier energies. For ${ }^{3} \mathrm{He}$, it is clear that the reaction products are due to ${ }^{4} \mathrm{He}$ transfer and not due to elastic breakup

