

Study of ⁴He(⁴He, ⁴He)⁴He^{*} inelastic scattering at the MAGNEX facility

Vasilis Soukeras

Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud Catania, Italy

6th Hellenic Institute of Nuclear Physics Workshop (HINPw6) 14-16 May 2021 6th workshop of the Helienic institute of Nuclear Physics New Aspects and Perspectives in Nuclear Physics Zoom Conference Hintowal and Rapedistrian University of Athens HINPWG - 14-16 May 2023

Outline

Introduction

- ➤ The physics case
- Recent theoretical studies
- > Existing 4 He(e,e') 4 He* and 4 He(4 He, 4 He) 4 He* studies
- Experimental setup
- ✤Particle identification

Results

- Elastic scattering
- Inelastic scattering (& simulations !)
- ✤Fano analysis
- Theoretical interpretation
- Summary and perspectives

The physics case

D.R. Tilley et al.	, Nucl.	Phys. A 541,	1	(1992)
--------------------	---------	--------------	---	--------

$E_{\rm x}$	J^{π}	Т	$\Gamma_{\rm p}$	Γ_{n}	$\Gamma_{\rm d}$	Γ	Decay
(MeV)			(MeV)	(MeV)	(MeV)	(MeV)	
g.s.	0+	0			11		
20.21	0+	0	0.50	0.00	0.00	0.50	р
21.01	0-	0	0.64	0.20	0.00	0.84	p, n
21.84	2^{-}	0	1.26	0.75	0.00	2.01	p, n
23.33	2^{-}	1	2.64	2.37	0.00	5.01	p, n
23.64	1-	1	3.44 ^a	2.76 ^a	0.00	6.20	$\mathbf{p},\mathbf{n},(\gamma)$
24.25	1-	0	3.08 ª	2.87 ^a	0.15	6.10	p, n, d
25.28	0-	1	4.12	3.85	0.00	7.97	p, n
25.95	1-	1	6.52 ^b	6.14 ^b	0.00	12.66	p, n, γ
27.42	2^{+}	0	0.25	0.23	8.21 °	8.69	p, n, d
28.31	1+	0	4.72	4.66	0.51	9.89	p, n, d
28.37	1-	0	0.07	0.08	3.77	3.92	(p, n), d
28.39	2^{-}	0	0.02	0.02	8.71	8.75	(p, n), d
28.64	0-	0	0.00	0.00	4.89	4.89	d
28.67	2^{+}	0	0.00	0.00	3.78 ^d	3.78	d, γ
29.89	2^{+}	0	0.04	0.04	9.64 ^e	9.72	(p, n), d

^a Primarily ³P₁. ^b Primarily ¹P₁. ^c Primarily ⁵S₂. ^d Primarily ¹D₂. ^e Primarily ⁵D₂.

Resonance energy and width were obtained as an average of very different values

It is important to extract in a modern measurement the position and width of the first 0⁺ resonance with a better accuracy with respect to previous ⁴He(⁴He,⁴He)⁴He* and ⁴He(e,e')⁴He* data

Recent theoretical studies (1)

- A recent **ab-initio calculation** of the monopole transition form factor of ⁴He with realistic nuclear forces
- pointed to a strong dependence on the different realistic potentials used
- a significant disagreement with respect to all existing electron scattering data was found when a method based on modern 3-body Hamiltonians from chiral perturbation theory was adopted.
- The puzzling inconsistency between the recent ab-initio form factor calculation and the existing data from ⁴He(e,e')⁴He* makes necessary the further investigation of the subject with increased precision.

S. Bacca, et al., Phys. Rev. Lett. 110, 042503 (2013)

Existing ⁴He(e,e['])⁴He^{*} experimental data

R.F. Frosch et al. NPA 110, 657 (1968) $E^* = 20.29 \pm 0.16$ MeV $\Gamma = 0.39 \pm 0.10$ MeV Large background
 The reported centroids seem to agree

Existing ⁴He(⁴He, ⁴He)⁴He* experimental data

Small background Larger obtained widths with respect to (e,e') studies

(e,e') vs (4He,4He*)

⁴He(e,e')⁴He*

Positive features

- Pure electro-magnetic
- Direct access to the form factor

Negative features

- Mixed isoscalar and isovector probe
- Only protons are involved
- The higher multipolarities cannot be excluded (dipole, quadrupole ...)
- Very low cross sections

⁴He(⁴He,⁴He)⁴He^{*}

Positive features

- Purely isoscalar
- Large cross section
- Higher multipolarities easier to be unfolded

Negative features

- Involves the nuclear force
- The monopole form factor must be extracted from the measured cross section by optical model analysis

Study the first excited 0⁺ state in ⁴He with an hadron probe involving a nuclear field

Recent theoretical studies (2)

□ In a recent work by Kucuk, Karakoc and Vitturi

- the transition densities to 0⁺ state were calculated and nuclear form factors were constructed by folding procedure
- cross section angular distributions were calculated for the first excited 0⁺ state of ⁴He by using both macroscopic and microscopic models

The proposed experiment

- ✓ **Elastic** & **inelastic** scattering measurements by using:
 - ➤ Superconducting cyclotron beam of ⁴He at 53 MeV
 - > ⁴He target (implanted on a thin ²⁷Al foil)
- Measurement of the elastically scattered ⁴He particles by the large acceptance MAGNEX spectrometer
- Measurement of the inelastic scattering by detected ⁴He particles in MAGNEX in coincidence with one of ⁴He* breakup fragments detected in OSCAR silicon telescope

 \rightarrow Goals:

- > Clarify the previous inconsistencies between (⁴He,⁴He) and (e,e') data
- > Extract the characteristics of the first excited state (0⁺) of ⁴He in a modern measurement
- > A **global** theoretical interpretation of all measured reactions

Experimental setup

Particle Identification

M A G N E X

Elastic scattering

Inelastic scattering

• ⁴He + ⁴He \rightarrow ⁴He + ⁴He^{*} \rightarrow ⁴He^{*} + ³H^{*} + ¹H • ⁴He + ⁴He \rightarrow ⁴He^{*} \rightarrow ⁴He^{*} + ³He^{*} + ⁿ MAGNEX OSCAR

Experimental data VS simulations

Cyan blue \rightarrow transfer (⁴He+⁴He \rightarrow ³H+⁵Li \rightarrow ⁴He+³H+¹H)

Black \rightarrow experimental spectrum Red \rightarrow resonant continuum Green \rightarrow non-resonant continuum Cyan blue \rightarrow transfer (⁴He+⁴He \rightarrow ³He+⁵He \rightarrow ⁴He+³He+n)

23.5

24

24.5

Ex+20.577

MULTIP algorithm [O. Sgouros et al., EPJA 53, 165 (2017)]

Experimental data VS simulations

> MULTIP algorithm [O. Sgouros et al., EPJA 53, 165 (2017)]

Angular distribution for the 1st exc. state of ⁴He (0⁺)

Fano analysis

U. Fano, Phys. Rev. 124, 1866 (1961)
C. Ott et al., Science 340, 716 (2013)
M.F. Limonov et al., Nature Photonics 11, 543 (2017)
M. Cavallaro et al., Phys. Rev. Lett. 118, 012701 (2017)

Fano analysis for the ⁴He 0⁺ resonance

$$\sigma = \sigma_{\text{cont}} \frac{|q + \epsilon|^2}{1 + \epsilon^2}$$
$$\epsilon = 2(E - E_r)/\Gamma_r$$

dσ/dE spectrum (6.5-12.0 deg)
Fit with 6 free parameters:
4 Fano parameters
2 parameters for the pure non-resonant continuum and transfer, respectively

Obtained Fano parameters:

σcont	=	1.49 ± 0.88
q	=	2.37 ± 0.86
Er	=	20.27 ± 0.06
Гr	=	0.35 ± 0.11

Theoretical interpretation

Following the prescription of Kucuk, Karakoc and Vitturi with microscopic and macroscopic models Y. Kucuk et al., Eur. Phys. J. A 57, 37 (2021)

Summary and perspectives

- Elastic scattering measurements for the ⁴He + ⁴He system were performed at the beam energy of 53 MeV in a wide angular range with the MAGNEX spectrometer.
- Inelastic scattering measurements were performed for the same system by measuring the ⁴He particles in MAGNEX in coincidence with the ³H (³He) particles coming from the ⁴He* breakup in the OSCAR telescope.
- ✓ Monte Carlo kinematical simulations were performed for both the resonant (inelastic to 0⁺ excited state of ⁴He) and non resonant breakup and seem to describe very well the experimental data.
- ✓ An analysis based on Fano function was performed for the first excited state (0⁺) region of ⁴He and the Fano parameters were determined.
- \checkmark The theoretical interpretation of the data is in progress

Collaborators

V. Soukeras, F. Cappuzzello, M. Cavallaro, D. Carbone, A. Hacisalihoglu, M. Fisichella, C. Agodi, H.-W. Becker, G. A. Brischetto, S. Calabrese, C. Ciampi, M. Cicerchia, M. Cinausero, I. Ciraldo, M. D' Andrea, D. Dell' Aquila, S. Firat, C. Frosin, M. Hilcker, M. Karakoç, Y. Kucuk, L. La Fauci, H. Lenske, I. Lombardo, T. Marchi, O. Sgouros, A. Spatafora, D. Torresi, M. Vigilante, A. Vitturi, A. Yildirim

INFN – Laboratori Nazionali del Sud, Catania, Italy

- Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Catania, Italy
- □ Institute of Natural Science, Karadeniz Teknik Universitesi, Trabzon, Turkey
- Ruhr-Universitat Bochum, Bochum, Germany
- □ INFN Sezione di Firenze, Florence, Italy
- INFN Laboratori Nazionali di Legnaro, Legnaro, Italy
- INFN Sezione di Catania, Catania, Italy
- Rudjer Bošković Institute, Zagreb, Croatia
- Akdeniz University, Antalya, Turkey
- □ Department of Physics, University of Giessen, Germany
- □ INFN Sezione di Napoli and Università degli Studi di Napoli "Federico II", Napoli, Italy
- □ INFN Sezione di Padova and Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, Padova, Italy

Thank you very much for your attention