

HINPw6 Workshop Low energy reactions of halo nuclei

Ismael Martel
Departamento de Ciencias Integradas
Universidad de Huelva
Spain

Low energy reactions of Halo nuclei

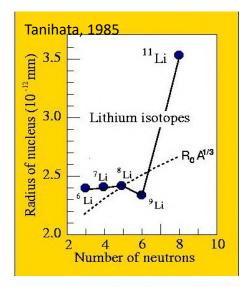
Halo nuclei present common structural properties:

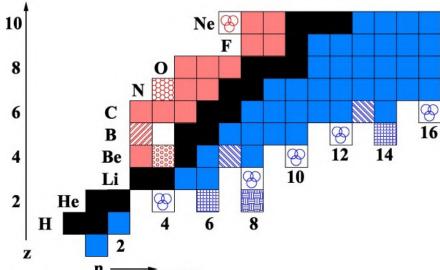
- Rather inert core plus one or two barely unbound extra neutron.s
- Often form 3-body borromean systems: 6,8He, 11Li.
- Extended neutron distribution, large "radius". → "halo".
- Low binding energy.
- Few bound excited states.

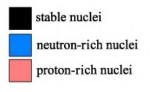
Coulomb barrier energies are interesting to study halo dynamics

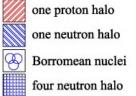
- important correlation between relative motion and internal degrees of freedom.
- strong couplings effects between elastic channel and inelastic, transfer, breakup and fusion channels.
- good energy range to study influence of halo on reaction dynamics.
- probe of theoretical models for few body systems and nucleon correlations.

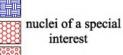

Elastic Cross Sections

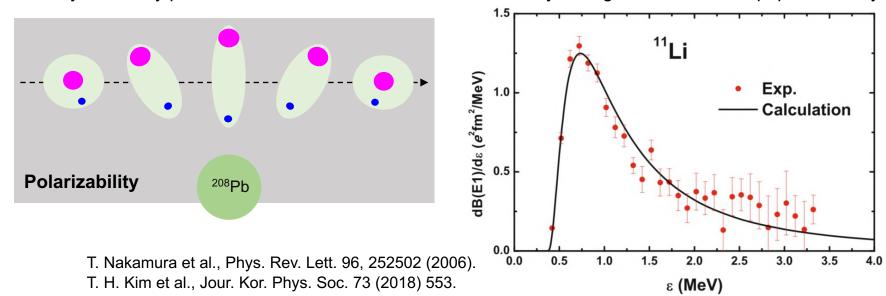

- Large yields at Coulomb barrier.
- Useful to get first information with low intensity RIBs > 5 10³ pps.
- Peripheral process, it probes the tail of the nuclear wave function.


Weak binding + extended neutron distribution


- large coupling to continuum states.
- Soft dipole modes.
- Coulomb dipole polarizability.
- Large breakup yields.

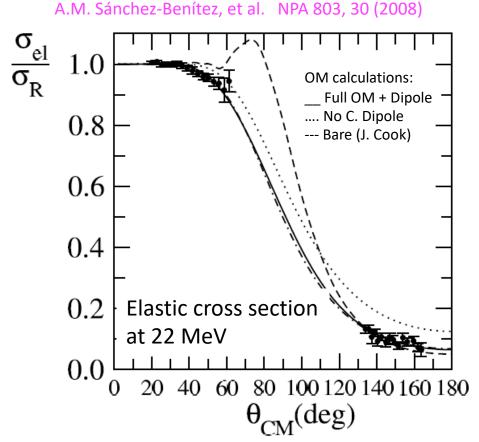




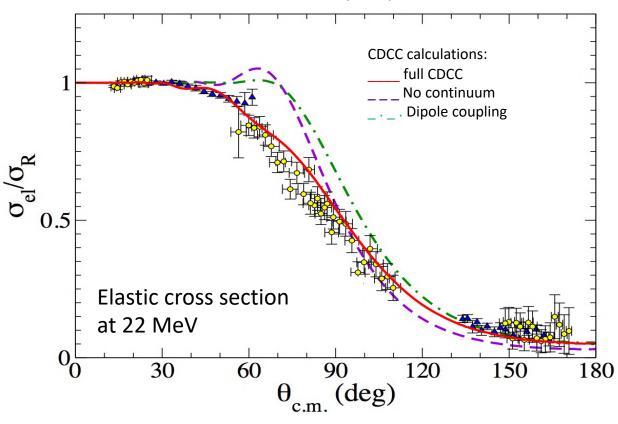


Coulomb barrier scattering of halo nuclei

- Coupling between relative motion and internal degrees of freedom
 elastic inelastic transfer breakup fusion + effects of the continuum
- Strong absorption in elastic channel
- Large cross section for fragmentation



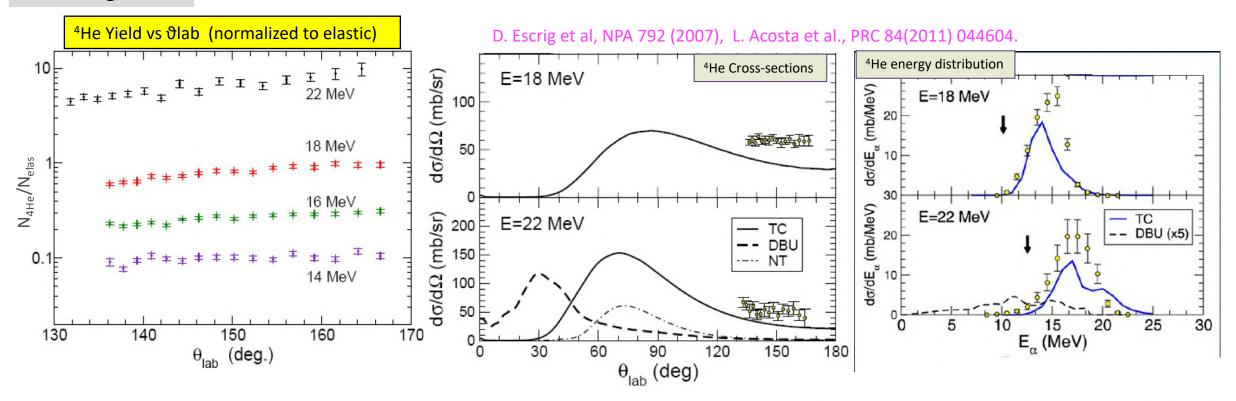
• They are easily polarizable: distortion of structure in the vicinity of target → Coulomb dip. polarizability



- Halo nucleus with Borromean structure: (4He + n + n); no bound states.
- Most investigated halo nucleus at Coulomb barrier energies (~ 50 data sets-EXFOR).
- 6 He+ 208 Pb @ 14,16,18, 22 MeV at CRC (Louvain-la-Neuve, Belgium).

L. Acosta et al., PRC 84(2011) 044604.

- Strong absorption up to small scattering angles, rainbow dissapears.
- Large diffusivity of the OM imaginary potential ~ 1.8 fm
- Long range reaction mechanisms → Strong dipole Coulomb couplings



- CDCC calculations describe the data (2n-model)
- Scattering process dominated by:

N. Keeley et al., PRC 68, 054601 (2003)

- Dipole couplings (coulomb + nuclear)
- K. Rusek et al., PRC 72, 037603 (2005).

- Coupling to continuum
- Strong Coulomb couplings due to the high target Z

- Large alpha yields even at sub-barrier energies (14 MeV, 10% of elastic)
- Large deviation from Rutherford scatt. well below the barrier.
- Forward angles dominated by direct breakup: CDCC calculations (DBU).
- Backward angles dominated by neutron transfer. DWBA calculations:
 - → 1n transfer (NT) gives small contribution.
 - → 2n- transfer to the continuum (TC) gives main contribution.

- 2n-transfer describes properly the energy distribution.
- Strong coupling to breakup and transfer channels.
- Testbench for improving dynamic polarization potentials (breakup), polarizability, di-neutron and four body models.

R.S. Machintosh and N. Keley, Phys. Rev. C.79 (2009) 014611 N. Keeley, K.W. Kemper, K. Rusek. Phys. Rev. C.88.017602 A.M. Moro, et al, Phys. Rev. C 75, 064607 (2007) M. Rodríguez-Gallardo et al., PRC 80, 051601(R)(2009) V. Morcelle et al, PLB 732, 2014, 228

Vast amount of data: systematics of low energy ⁶He scattering: reaction cross sections

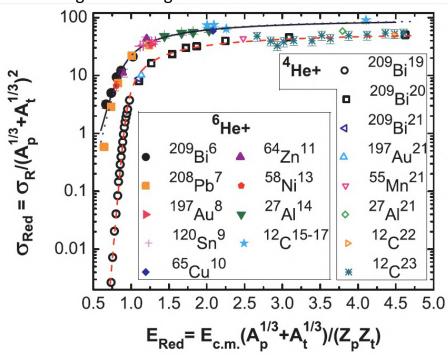
A systematic behavior can be found in reactions with several targets and energies by using scaling parameters for energy and radius:

Radius scaling factor: $(Ap^{1/3}+At^{1/3}) \sim size$

Energy scaling factor: $Zp Zt/(Ap^{1/3}+At^{1/3}) \sim coulomb barrier \rightarrow E_{reduced}$

Xsection scaling factor: $R^2 \sim (Ap^{1/3} + At^{1/3})^2 \rightarrow \sigma_{reduced}$

Fit data with Wong's formula:


$$\sigma_{\mathrm{Red}}^{W} = \frac{\epsilon_0 r_{0b}^2}{2E_{\mathrm{Red}}} \ln \left\{ 1 + \exp \left[\frac{2\pi}{\epsilon_0} (E_{\mathrm{Red}} - V_{\mathrm{Red}}) \right] \right\}$$

Results:

Projectile	$V_{ m Red}$	r_{0b}	ϵ_0	$N_{\rm pts}$	χ^2/N
⁶ He	0.780 ± 0.014	1.79 ± 0.04	0.43 ± 0.06	28	4.3
⁴ He	0.913 ± 0.005	1.39 ± 0.05	0.175 ± 0.006	43	3.4

E.F. Aguilera et al., PRC 83, 021601(R) (2011)

Reaction cross sections for ⁶He and ⁴He at several energies and targets

Conclusions:

- Halo effects → Reaction barrier becomes lower and narrower → increase of reaction Xsection
- "Universal" function for ⁶He reactions
- Core + halo decoupling: Xreac = Xcore + Xhalo
- Classification of light nuclei: normal, weakly bound, halo

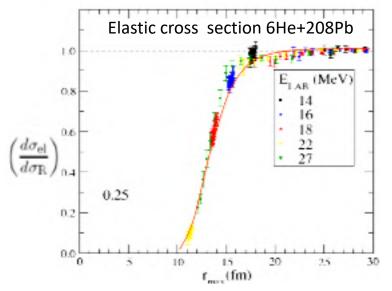
J.J. Kolata and E.F. Aguilera et al., PRC 83, 027603 (2009)

Systematics of Elastic scattering angular distributions

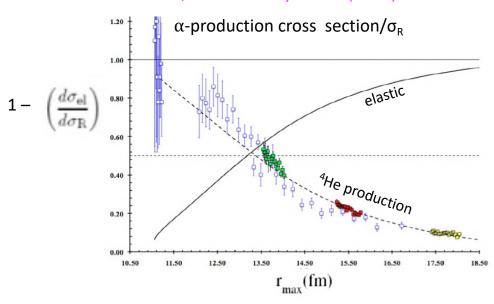
The scattering of halo nuclei at low energy system ⁶He+²⁰⁸Pb also exhibits interesting regularities in the angular distributions of elastic and alpha production cross sections.

Scaling parameters:

- Cross section: → Rutherford cross section
- Angle → distance of closest approach in coulomb trajectory

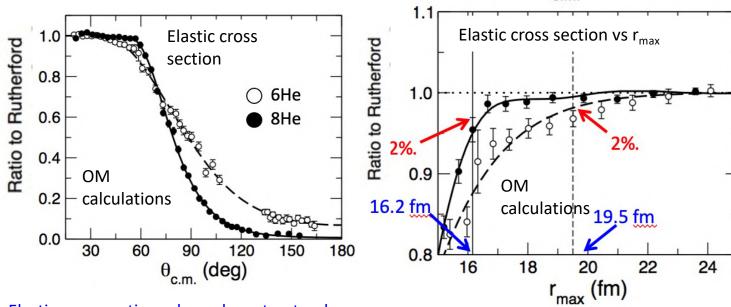

$$r_{max}(\theta) = e^2 (Zp Zt/2 E) (1+1/Sin(\theta/2))$$

→ Semiclassical picture of the reaction process

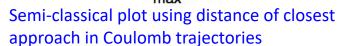

Survival probability
$$\frac{d\sigma_{\rm el}}{d\sigma_{\rm R}} = P_{\rm el} = \exp\left[-\frac{2}{\hbar}\int\limits_{-\infty}^{\infty}W(r(t))dt\right]$$

- Proximity potential + Coulomb trajectories $W(r) = -W_0 \exp{-\left(\frac{r-R}{a}\right)}$
- Analytic result: $\log \left(\frac{d\sigma_{\rm el}}{d\sigma_{\rm R}} \right) = -4W_0 \frac{a_0}{\hbar v} \exp \left(\frac{R-a_0}{a} \right) \left[K_0 \left(\frac{a_0}{a} \epsilon \right) + \epsilon K_1 \left(\frac{a_0}{a} \epsilon \right) \right]$
 - Systematics → Reaction, Elastic and ⁴He yield
 - Reaction dominated by alpha production channels (n-transfer, breakup...)
 - Semi-classical picture: reactions produced at distance of closest approach
 - "Universal" function for ⁶He scattering

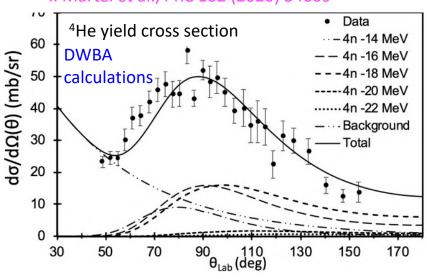
A.M. Sánchez-Benítez et al., Acta Phys. Pol. B 37 (2006) 1



I. Martel, et al. Eur. Phys. Jour. (2011)

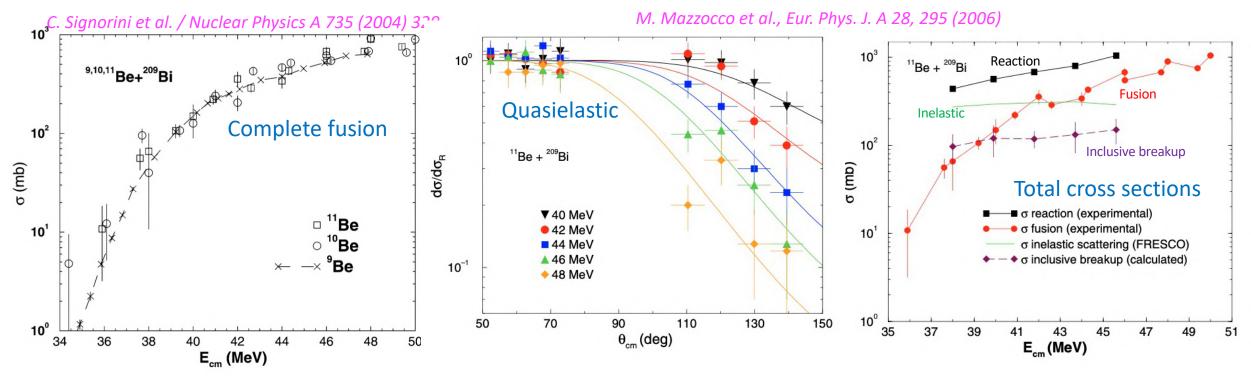

- 8He is the most neutron-rich particle-stable nucleus with N/Z = $3 \rightarrow$ borromean neutron skin (4He+ n+n+n+n).
- 8He + 208Pb @ 22 MeV at SPIRAL1/GANIL (Caen, France)

G. Marquínez-Durán et al., PRC 94, 064618 (2016), PRC 95 (2018)024602


Elastic cross sections show clear structural effects due to difference between skin and halo

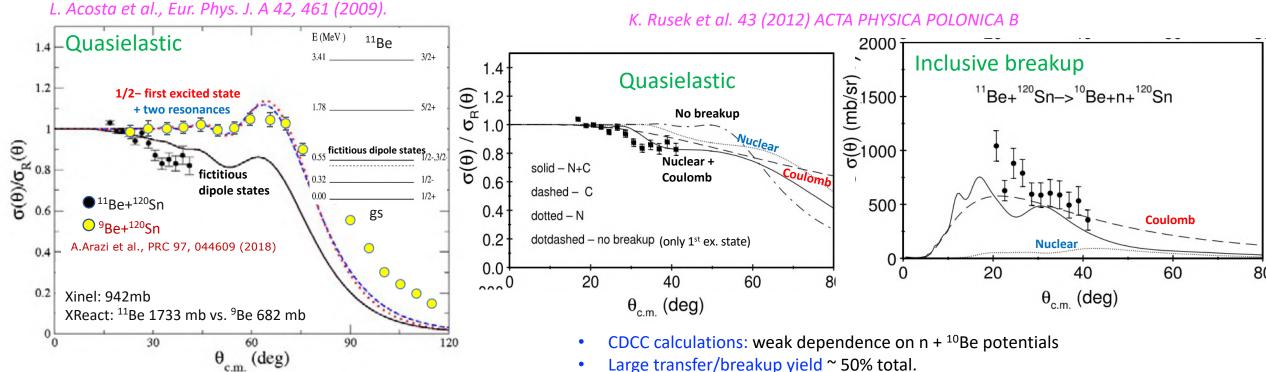
- Suppression of the Coulomb rainbow
- For 8He (skin): sharp fall-off of the elastic Xsection with with angle; but for 6He (halo): larger suppression of the Coulomb rainbow, smooth fall-off of elastic Xsec.
- Similar reaction cross sections for 6He,8He (1500/1400 mb).
- 8He OP has larger radius and smaller imaginary diffusivity → neutron transfer; 6He: dipole coupling to continuum and breakup;.

- Large absorption for 6He/8He at radii well beyond the strong absorption radius, but for 6He has a much longer range than for 8He
- Absorption for 8He has an abrupt decrease with distance whereas for 6He is very smooth
- 8He: dominated by neutron stripping at the proximity of the target. 6He: dipole coupling to continuum and breakup at large distances to the target.


I. Martel et al., PRC 102 (2020) 34609

DWBA calculations

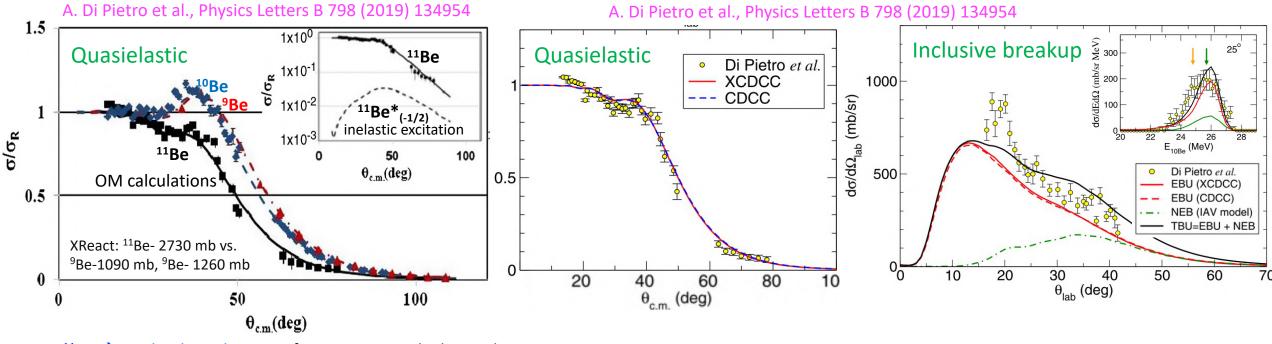
- Large cross section for 6He, 4He production
 (900/400 mb) → little room for complete fusion.
- Angular distributions consistent with n transfer.
- ⁶He yield (DWBA): Dominated by 1n transfer to excited states in 209Pb at Ex ~ 4 MeV, small contribution of direct 2n transfer.
- ⁴He yield (DWBA): Can be described by direct 4n transfer at Ex ~ 18 MeV.


- 11Be: 1n halo (10Be+n), one bound excited state (1/2-,320 keV), largest known B(E1) (ex \rightarrow gs) \rightarrow first halo discovered
- ¹¹Be+²⁰⁹Bi @ 35 50 MeV at RIKEN RIPS facility
- Inflight method + degraders → beam energy event by event via Time-Of-Flight (TOF).

- Puzzling result: very similar data for ^{9,10,11}Be.
- Reproduced by CCFULL, CDCC calculations.
- No sub-barrier hindrance for ¹¹Be due (expected from halo).
- No sub-barrier hindrance 10 Be (coupling to 1^{st} ex. state, large β_2).
- ¹¹Be → competition halo (hindrance) breakup.
- Similar effects to ⁶He fusion.

- Data well described by OM, DWBA and Coupled-Channel formalism with deformation from B(E1).
- Calculated inelastic cross sections.
- Reaction cross section ~ 10 x fusion cross section.
- Derived inclusive breakup cross sections ~ 100-150 mb ~ relatively small.
- Slightly larger fusion cross sections for ¹¹Be than ⁰Be below the barrier → halo effects.

 11 Be+ 120 Sn @ 32 MeV (REX-ISOLDE/CERN) \rightarrow 11 Be quasielastic and 10 Be fragments (breakup)


- Coulomb-nuclear interference is strongly damped.
- Deviation from Coulomb ~30° cm → long range reaction mechanism
- (CC) calculations: simple vibrational model + Inert target.
- Deformation length from B(E1).
- Two resonant states at 1.78MeV and 3.41MeV.
- Coupling to ${}^{10}\text{Be} + \text{n. continuum} \rightarrow \text{two fictitious dipole states.}$
- Most important effect is the coupling to the (dipole) continuum.
- No effect of ½- state on elastic despite relative large cross section.
- Small effect of resonances.

- Large transfer/breakup yield ~ 50% total.
 - Strong Coulomb-nuclear interference effect: competition of BOTH Coulomb and nuclear contributions; for ¹¹Be 1st exited state ~ destructive interference.
 - Important for BOTH quasielastic and breakup.
 - Coulomb post-acceleration: the whole Coulomb potential energy of ¹¹Be is taken by ¹⁰Be: larger kinetic energy than predicted from kinematics by ~ 1.8 MeV

$$\Delta E = \frac{m_n}{m_n + m_c} \frac{Z_c Z_t e^2}{R_{\text{bu}}},$$

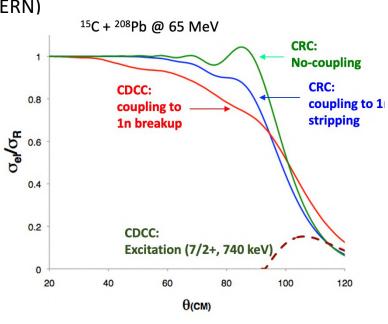
- \rightarrow 11Be breaks at about ~ 20 fm from the target
- → Much larger than strong absorption radius
- → large Coulomb effect on breakup

¹¹Be+ ⁶⁴Zn @ 28.7 MeV (REX-ISOLDE/CERN) \rightarrow ¹¹Be quasielastic and ¹⁰Be fragments (breakup)

- ¹¹Be → Coulomb-nuclear interference is strongly damped.
- Deviation from Coulomb ~30° cm → long range reaction mechanism.
- Low Z target (Z=30): Coulomb breakup not too strong → strong absorption associated with the halo structure.
- Small inelastic contribution ~ COULEX using B(E1).
- ¹¹Be: OM calculations with large imaginary surface term ~
 polarization potential to account for the strong reduction of the
 Coulomb-nuclear interference (ai=3.5 fm) → diffuse halo
 structure → long range absorption ~ dynamic polarizability.
- Large transfer/breakup cross section ~ 40% of the reaction cross
 sections. ~ factor 2 x ^{9,10}Be.

- Elastic and non-elastic BU calculations (EBU, NEB)
- EBU: XCDCC calculations ~ effect of core excitation → 10Be deformation.
- n-10Be system particle-plus-rotor model + deformed central potential (10Be ex.)
- Standard CDCC with same parameter to compare effects
- NEB: participant-spectator IAV model (M. Ichimura, N. Austern, C.M. Vincent, PRC32 (1985)431)
- Both XCDCC and CDCC reproduce the Quasielastic cross sections, but the inelastic cross sections differ by ~ 50% (940mb/450 mb) could only be tested by measuring inelastic.
- Both XCDCC and CDCC underpredict the inclusive BU 20%, the NEB makes an important contribution.
- EBU+NEB consistent with angular and energy distributions of ¹⁰Be fragments.
- Coulomb post-acceleration: larger kinetic energy ~ 1 MeV ~ 15 fm angle-independent, consistent with the result of ¹²⁰Sn scatt. → included in EBU+NEB formulation.

Scattering of ¹⁵C


- 15 C: 1n-halo (14 C+n). **Unique ground** state characterized by $2s_{1/2}$ single-particle configuration. First excited state (E= 740 keV).
- Coulomb barrier scattering of ¹⁵C + ²⁰⁸Pb @ 65 MeV

Recent experiment at HIE-ISOLDE (CERN)

Theoretical studies for the system ¹⁵C+²⁰⁸Pb at Coulomb barrier ~ E= 65 MeV.

- 1n-stripping channel: Coupled Reaction Channel calculations (CRC).
- Breakup: Continuum Discretized Coupled Channel Calculations (CDCC).
- Inelastic (7/2+, 740 keV): CDCC.

N. Keeley et al., Phys. Rev. C 75 (2007) 054610 N. Keeley et al., Eur. Phys. J. A 50 (2014) 145.

Scattering dominated by the competition of one-neutron stripping and breakup.

CRC/ 1n stripping		CDCC/ direct breakup		
Total reaction (mb)	927	Total reaction (mb)	1379	
1-n stripping (mb)	265	Breakup (mb)	462	
		Excitation(5/2+,740keV) (mb)	45	

OM parameters

15
C → a_{w} = 1.5 fm (!!)

100

$$\sigma_{\rm exp}(^{15}{\rm C}) \sim 3000~{\rm mb} \rightarrow 8~{\rm x}~\sigma_{\rm exp}(^{12}{\rm C})$$

120

140

160

✓ Stable: 12 C, a_w = 0.4 fm

0.00

- ✓ $3 \times \sigma_{th}$ (1n-stripping)
- ✓ 1n-halo: 11 Be, a_w = 3.5 fm
- \checkmark 2 x σ_{th} (1n-breakup)
- ✓ 2n-halo: 6 He, a_w = 2 fm

Seems to be an extraordinary result, but:

- Data analysis suffered from low statistics ~ shift forward angular distribution ~20°
- Requesting more beam time to improve/review the measurement

Summary and conclusions

- Brief summary of relevant results involving Coulomb barrier scattering of ⁶He (2n-halo), ⁸He(2n/4n-skin) and ¹¹Be (1n-halo), ¹¹C (1n-halo).
- Larger reaction cross sections than stable nuclei, dipole polarizability and coupling to the continuum.
- Systematics of reaction cross sections, angular distributions of elastic and core-production cross sections.
- Difference between halo and skins.
- More neutrons do not produce much more fusion → breakup.
- Reaction dynamics depends on the particular halo system and target: for large target Z Coulomb effects are more important.
- Core deformation, elastic and inelastic breakup.
- Simpler 3 body models can describe gross properties, core deformation and 4 body models are needed for accurate descriptions.
- Good workbench to test few-body models and nucleon-nucleon correlations, leading to new interesting discoveries.