

National and Kapodistrian University of Athens, Department of Chemistry, Laboratory of Physical Chemistry

Constrained Fermionic Dynamics of Nuclear Systems: Near Ground State Properties & the Isospin Symmetry

T. DEPASTAS^A, G.A. SOULIOTIS^A, K. PALLI^A, M. VESELSKY^B, H. ZHENG^{C,D}, A. BONASERA^{C,D}

^aLaboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens
 ^b Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic
 ^cCyclotron Institute, Texas A&M University, College Station, Texas, USA
 ^dLaboratori Nazionali del Sud, INFN, Catania, Italy

Content Overview

PART I: CoMD & Initial Configurations PART II: CoMD & GDR PART III: CoMD & Isospin Symmetry

PART I: "CoMD and Initial Configurations"

The Nuclear N-Body Problem

Nuclear Interaction \rightarrow Fascinating, complicated and still unknown

Results from the strong nuclear force between quarks & gluons of the nucleons

Can be described by the exchange of pions or phenomenological

Includes: central terms, spin-dependence, spin-orbit coupling, tensor terms, momentum and iso-spin dependence

Constrained Molecular Dynamics Approach

♦ Hamiltonian: Skyrme Potential → Finite Range of interaction as momentum dependence

Volume, surface, Coulomb, 3-Body and symmetry terms

 $V = V^{vol} + V^{surf} + V^{coul} + V^{sym} + V^{(3)}$

◆Trial wavefunctions → parametrised gaussian wave-packets
 → Time Dependent Variational Principle → Hamiltonian
 Equations of Motion in Phase Space (Wigner Representation)

Constrained Molecular Dynamics Approach

◆Pauli Antisymmetrisation Principle → Constrain of the Phase Space occupation fractions (= probabilities) → Pauli Correlation strength as free parameter *paulm*

$$\bar{f}_i \leq \frac{paulm}{128}, \forall i$$

Compressibility: The nuclear "compression susceptibility" parameter ("hardness of EOS")

$$K_{NM} \equiv 9\rho_0^2 \left[\frac{\partial^2}{\partial \rho^2} \left(\frac{E}{A} \right) \right]_{\rho_0}$$

♦ Equations of Motion → 1st order differential equations → need initial conditions ! Three step calculation → Initialization, Evolution & Data Processing

Initial Configurations and Ground States

Statistical Simulated Annealing \rightarrow Initial Configurations (phase space centroids at t=0)

♦ Configuration Space → Depends heavily upon initial parameters

- Important parameters:
 - Strength of Pauli Correlations (paulm)
 - \diamond Wave-packet width (σ_r)
 - * Saturation Density (ρ_0)
 - surface parameter (C_{surface})
 - asymmetry parameter (a_{sym})
 - Compressibility (K) .

Important characteristics: BE/A, neutron skin, rms radii, average density & occupation fraction

 E_{Tot}

BE

Effect of Important Model Parameters

Globally Optimized Configurations

- Configurations are characterized by:
 - Binding Energy
 - Average Occupation Fractions
 - Radius
 - Average Density

 \bullet Usually as one characteristic is improved, the others worsen \rightarrow Effort for <u>Global</u> Optimization !

♦ Optimization algorithm → Use of Skyrme-Hartree-Fock calculations, experimental data and empirical parametrizations

Results so far: better over-all configuration and characteristics, more stable giant dipole resonances and reactions !

PARTII: "COMD & IVGDR"

Isovector Giant Dipole Resonance (GDR)

- ♦ Low lying excited states → Collective Vibrations! (= modes of rotations and vibrations, like in molecules)
- ♦GDR → oscillation of proton center of mass against neutron center of mass
- Results in fission, peripheral, photonuclear reactions, ...
- Give important information for the nuclear interaction and EoS (= function of energy vs density)

GDR in the CoMD Formalism

✤ Perturbation of the initial configurations → Damped oscillation (i.e. D(t)) → Lorentzian Fourier Spectrum

Spectrum depends upon the parameters of the effective interaction (K, paulm, ...)

Width mostly depends on in-medium NN scattering crosssection

 $\sigma_{NN} = a_{redc} \left(T_{cm}, \overline{\rho} \right) \sigma_{free}$

Development of a simple model: CoMD based GDR equations of motion

$$\begin{aligned} \dot{D} + b\dot{D} + \omega_0^2 D &= 0 \\ \text{ctive} \quad b = \frac{\Gamma}{\hbar} \sim \sigma_{NN} \quad \omega_0 = \sqrt{\frac{a_{sym}\rho_{np}}{2\rho_0 m \sigma_r^2 NZ}} \\ \text{cross-} \quad \omega = \sqrt{\omega_0^2 - \left(\frac{b}{2}\right)^2} \\ \omega &= \sqrt{\omega_0^2 - \left(\frac{b}{2}\right)^2} \\ \rho_{ij} \sim e^{-\frac{\left(\langle \vec{r}_i \rangle - \langle \vec{r}_j \rangle\right)^2}{4\sigma_r^2}} \\ \rho_{np} &= \sum_{i \to p} \sum_{j \to n} \rho_{ij} \end{aligned}$$

GDR in the CoMD Formalism

Effect of Model Parameters

Effective Mass and Momentum Dependence

♦ Finite Range of interaction → Momentum dependence

Skyrme-like Potential of CoMD \rightarrow Contact force

✤Gaussian ansatz of momentum dependent term:

$$V_{mom}^i = A e^{-c \langle \overrightarrow{p_i} \rangle^2}$$

★Low energy limit → p² dependence → "Effective mass"

$$V_{mom}^{i} \approx A\left(1 - c\langle \overrightarrow{p_{i}}\rangle^{2}\right) \longrightarrow T^{i} = \frac{\langle \overrightarrow{p_{i}}\rangle^{2}}{2m}\left(1 - cA\right) \equiv \frac{\langle \overrightarrow{p_{i}}\rangle^{2}}{2m^{*}}$$

Parametrization though free parameter:

$$m^* \equiv f_{mass} \cdot m$$

♦ Decrease of mass \rightarrow Increase of E_{GDR}

Mass Dependence of GDR & Skin in CoMD

♦ GDR → Correct dependency upon A

 $E_{GDR} = 31.2A^{-1/3} + 20.6A^{-1/6}$

♦ Soft EOS → K=254, a_{sym} =32 MeV & m*/m=1

Difference from empirical parameterization by about 3-4 MeV

♦ Hard EOS → K=308, a_{sym} =38 MeV & m*/m<1

Difference from empirical parameterization by about 1-2 MeV

G. Giuliani, H. Zheng, A. Bonasera Prog in Part & Nuc Phys 76, pp 116-164 (2014).

Giant Monopole Resonances in CoMD

Momentum Space Iso-Scalar Perturbation \rightarrow Temperature

\diamond Fourier Transform of Radius over time \rightarrow GMR Spectrum !!

xNi (x=58,64,68) → E_{GMR} ~ 22 MeV (experimental 21.1 ± 1.9 MeV)

Soft monopole for ⁶⁸Ni \rightarrow E_{soft} ~ 14.5 MeV (experimental 12.9 ± 1.0 MeV)

X. Sun, Phys Rev C, **103** 044603 (2021)

PART III: "CoMD & Isospin Symmetry"

Nuclear Isospin Symmetry

♦ Masses of proton-neutron almost equal → two states of the same "nucleon particle"

♦ Isospin quantum number → Identity of the particle → $\tau_n = 1/2$ & $\tau_p = -1/2$ → same algebra as s = 1/2 particles !

♦ Isospin Mirror Transformation \rightarrow exchange of protons and neutrons (i.e. $n \rightarrow p$)

◆Isospin Symmetry → Approximate Symmetry of the nuclear systems → Breaks due to Coulomb interaction → Isospin Symmetry Breaking (ISB), e.g. E_{GDR}

Total Coupled Isospin quantum numbers

$$\widehat{T}^2 |\Psi\rangle = \tau (\tau + 1) |\Psi\rangle \qquad \widehat{T}_3 |\Psi\rangle = \tau_3 |\Psi\rangle = \frac{N - Z}{2} |\Psi\rangle$$

V.A. Plujko, O.M. Gorbachenko, R. Capote, P. Dimitriou, At Dat Nuc Dat Tab 123 & 124, 1-85 (2018).

Isospin Symmetry of the CoMD

♦ Ground state → Approximate symmetry → Explicit Symmetry Breaking → Coulomb interaction in CoMD Lagrangian

♦ Absolute Neutron Skin → Approximately isospin symmetric

$$|skin| = \left|\sqrt{\langle r_n^2 \rangle} - \sqrt{\langle r_p^2 \rangle}\right|$$

♦ Extension of GDR theoretical treatment → GDR Lagrangian totally isospin symmetric !

GDR energy depends on A & τ_3^2

$$\frac{A}{NZ} = \frac{A}{4} - \frac{\tau_3^2}{A}$$

$$V = V^{vol} + V^{surf} + V^{coul} + V^{sym} + V^{(3)}$$

T. Depastas, G. Souliotis, A. Bonasera *et al*, Theoretical Report in Progress

Isospin-T₃ Symmetry Behavior of the CoMD

♦ Absolute Skin → Symmetric "well" near N=Z line → Explicit Symmetry Breaking

♦ GDR :

Explicit mass dependence around N=Z

 $T_3>0 \rightarrow$ Descending Trend

Summary & Conclusions

- Extensive use of the CoMD description of the nuclear N-body problem & dynamics
- Algorithm for selection of optimum configurations \rightarrow better overall results in calculations
- ♦ Higher K, wave-packet width & Lower paulm, saturation density → Higher Total E/A (Less bound nucleus)
- * Higher K, symmetry energy parameter & Lower *paulm*, effective mass \rightarrow Higher GDR Energy
- Higher N-N Scattering Cross Section \rightarrow Greater Width
- Study of Monopole modes for ^xNi, x = 58, 64, 68
- Examined Isospin symmetry behavior in CoMD:
 Protons slightly larger than neutron skins (mirror pairs)
 Lower of E_{GDR} with increasing T₃
- Further Investigations are on going
- ✤Future Goals: Use of K=308, Explicit Momentum Dependence & Development of E_{GDR} parameterization f(A,Z).

I WOULD LIKE TO THANK DR. G. SOULIOTIS FOR HIS GUIDANCE AND SUPPORT AND THE OTHER MEMBERS OF THE GROUP AND YOU FOR YOUR ATTENTION !