STUDIES OF MULTINUCLEON TRANSFER IN PERIPHERAL COLLISIONS OF ⁸⁶KR WITH ¹²⁴ SN, ¹¹²SN AT 15 MEV/NUCLEON

O. FASOULA¹, G. A. SOULIOTIS¹, S. KOULOURIS¹, K. PALLI¹, T. DEPASTAS¹, M. VESELSKY², S. J. YENNELLO³, A. BONASERA³

¹ LABORATORY OF PHYSICAL CHEMISTRY, DEP. OF CHEMISTRY, UNIVERSITY OF ATHENS. GREECE ² INSTITUTE OF EXP. AND APPLIED PHYSICS, CZECH TECHNICAL UNIVERSITY, PRAGUE, CZECH REPUBLIC

³ CYCLOTRON INSTITUTE, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS, USA

HELLENIC REPUBLIC National and Kapodistrian University of Athens 6TH HELLENIC INSTITUTE OF NUCLEAR PHYSICS WORKSHOP 14-16 MAY 2021, ATHENS

Overview

☆ Introduction

Experimental Data 15 MeV/nucleon ⁸⁶Kr + ^{112/124}Sn Mass distributions Momentum distributions

☆ Model Calculations 15 MeV/nucleon ⁸⁶Kr + ^{112/124}Sn ☆ Mass distributions ☆ Momentum distributions

 \bigwedge Conclusions - Discussion

Isotope Discoveries

G. G. Adamian et. al, Eur. Phys. J. A 56:47 (2020).

Methods of Production

G. G. Adamian et. al, Eur. Phys. J. A 56:47 (2020).

Nuclear Reactions

☆ High Projectile Energies
☆ Peripheral: Fragmentation Reactions
☆ Coulomb barrier
☆ Peripheral and semi-peripheral reactions
☆ Nucleon exchange
☆ Fermi Energy Regime
☆ Reaction mechanism in between
☆ Multinucleon Transfer
☆ Our main focus
☆ Nuclear Fission
☆ Production of neutron rich isotopes

Peripheral Reactions

Momentum Achromat Recoil Separator - MARS

Experimental Mass Distributions: ⁸⁶Kr + ¹¹²Sn / ¹²⁴Sn

Mass Distributions of Projectile-like fragments

 ☆ ¹²⁴Sn higher than ¹¹²Sn on neutron rich side
 ☆ Production of neutron rich
 ☆ Kr, Se: up to 6 n-pickup
 ☆ Br, As, Ge: up to 4 n-pickup

: ⁸⁶Kr + ¹²⁴Sn (N/Z=1.48) : ⁸⁶Kr + ¹¹²Sn (N/Z=1.24) -: Neutron Pickup

★ Experimental data: G.A. Souliotis et al., Phys. Rev. C, 84, 064607, (2011).

Experimental Momentum Distributions: ⁸⁶Kr + ¹¹²Sn / ¹²⁴Sn

<u>Momentum Distributions</u> Extracted from original data☆

Neutron Pickup Channels

 ☆ Measured Cross Sections at 7°
 ☆ ¹²⁴Sn higher than ¹¹²Sn
 ☆ Two main regions

: ⁸⁶Kr + ¹²⁴Sn (N/Z=1.48)
 : ⁸⁶Kr + ¹¹²Sn (N/Z=1.24)
 --: Beam Velocity: 167 MeV/c

☆ Original Experimental data: G.A. Souliotis et al., Phys. Rev. C, 84, 064607, (2011).

Experimental Momentum Distributions: ⁸⁶Kr + ¹¹²Sn / ¹²⁴Sn

<u>Momentum Distributions</u> Extracted from original data☆

Proton Removal Channels

 ☆ Measured Cross Sections at 7°
 ☆ ¹²⁴Sn higher than ¹¹²Sn
 ☆ Two main regions

: ⁸⁶Kr + ¹²⁴Sn (N/Z=1.48)
 : ⁸⁶Kr + ¹¹²Sn (N/Z=1.24)
 --: Beam Velocity: 167 MeV/c

Binary Kinematics (Peripheral) $E^*_{tot} = Q_{aa} - Q_r | E_{QP} \approx E^*_{tot}/2$

☆ Original Experimental data: G.A. Souliotis et al., Phys. Rev. C, 84, 064607, (2011).

Experimental Momentum Distributions: ⁸⁶Kr + ¹¹²Sn / ¹²⁴Sn

<u>Momentum Distributions</u> Extracted from original data☆

Channels -p +n

 ☆ Measured Cross Sections at 7°
 ☆ ¹²⁴Sn higher than ¹¹²Sn
 ☆ Two main regions

: ⁸⁶Kr + ¹²⁴Sn (N/Z=1.48)
 : ⁸⁶Kr + ¹¹²Sn (N/Z=1.24)
 ---: Beam Velocity: 167 MeV/c

- ☆ Original Experimental data: G.A. Souliotis et al., Phys. Rev. C, 84, 064607, (2011).
- DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991).
- CoMD: Constrained Molecular Dynamics,M. Papa et al., Phys. Rev. C, 64, 024612, (2001)
- ☆ Gemini: R. Charity et al., Nucl. Phys. A 483, 371 (1988). R. J. Charity, Phys. Rev. C 58, 1073 (1998).

Calculation Models

DIT - Deep Inelastic Transfer model (Phenomenological)

A Peripheral and semi-peripheral collisions

Stochastic nucleon exchange

Deep Inelastic Transfer (DIT) Model, L. Tassan-Got and C. Stephan, Nucl. Phys. A 524, 121 (1991)

CoMD: Constrained Molecular Dynamics model (Semiclassical)

Nucleons are considered as Gaussian wavepackets

X N-N effective interaction (Skyrme-type with K=254 MeV/fm³)

Pauli principle imposed via a phase-space constraint

Monte Carlo implementation. Description of the dynamical stage for t = 0-600 fm/c Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)

GEMINI - De-Excitation

🔀 Binary decay model

R. Charity et al., Nucl. Phys. A 483, 371 (1988). R. J. Charity, Phys. Rev. C 58, 1073 (1998).

Model Calculations - Mass Distributions: ⁸⁶Kr + ¹²⁴Sn

Mass Distributions of Projectile-like fragments

 Primary Fragments Same DIT/CoMD
 DIT lower than CoMD
 Overall good agreement on Z=34-32

- :⁸⁶Kr + ¹²⁴Sn (N/Z=1.48)
 - -: Neutron Pickup
 - : CoMD/Gemini
 - -: CoMD (Primary)/Gemini
 - : DIT/Gemini
- ---: DIT (Primary)/Gemini

Primary fragments

De-excited fragments

- **Experimental data:** G.A. Souliotis et al., Phys. Rev. C, 84, 064607, (2011).
- DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991).
- CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)
- ☆ Gemini: R. Charity et al., Nucl. Phys. A 483, 371 (1988). R. J. Charity, Phys. Rev. C 58, 1073 (1998).

Model Calculations - Momentum Distributions: ⁸⁶Kr + ¹²⁴Sn

<u>Momentum Distributions</u> Extracted from original data☆

Neutron Pickup Channels

☆ Preliminary calculations

• : 86 Kr + 124 Sn (N/Z=1.48) • : CoMD/Gemini • : DIT/Gemini • ---: Beam Velocity=167 MeV/c <u>Binary Kinematics (Peripheral)</u> $E^{*}_{tot} = Q_{gg} - Q_{r} | E_{QP} \approx E^{*}_{tot}/2$

- ☆ Original Experimental data: G.A. Souliotis et al., Phys. Rev. C, 84, 064607, (2011).
- DIT: Deep inelastic transfers: L. Tassan-Got, C. Stefan, Nucl. Phys. A, 524, 121, (1991).
- ☆ CoMD: Constrained Molecular Dynamics, M. Papa et al., Phys. Rev. C, 64, 024612, (2001)
- ☆ Gemini: R. Charity et al., Nucl. Phys. A 483, 371 (1988). R. J. Charity, Phys. Rev. C 58, 1073 (1998).

Conclusions - Discussion

So far:

Extracted and systematically studied experimental momentum distributions: ⁸⁶Kr beam with targets of ¹²⁴Sn and ¹¹²Sn at 15 MeV/nucleon
 Kinematic analysis on the momentum distributions
 Preliminary calculations with DIT and CoMD models

Future plans:

Study reactions with ⁸⁶Kr beam

 \checkmark Targets of ¹²⁴Sn and ¹¹²Sn at 15 MeV/Nucleon

Targets of ⁶⁴Ni and ⁵⁸Ni at 15 MeV/Nucleon

 \swarrow Targets of ¹²⁴Sn and ¹¹²Sn at 25 MeV/Nucleon

Kinematic analysis on the momentum distributions

Attempt to reconstruct the quasi-projectile

Comparison of the DIT and CoMD models with all the different parameters

C Explore the benefits of momentum distributions studies

C Elucidate the reaction mechanisms

Reach neutron rich isotopes

