Connecting the NEoS to the interplay between fusion and quasi-fission processes in low-energy nuclear reactions

HINPw6 Workshop

H. Zheng

School of Physics and Information Technology Shaanxi Normal University

Collaborators: S. Burrello, M. Colonna, D. Lacroix, G. Scamps

Outline

- Equation of state (EoS) of nuclear matter
- Low-energy (E/A~5-10 MeV/A), reaction mechanisms: from fusion to quasi-fission and deepinelastic
- The tool: mean-field models (TDHF, Vlasov) and effective interactions
- Sensitivity of selected observables to specific ingredients of the effective interaction
- Conclusions

Equation of State (EoS) is important

Nuclear Density functional theory

 Nuclear DFT has been introduced by effective Hamiltonians: by Vautherin and Brink PRC 5, 626 (1972), using the Skyrme model as a vehicle

$$E = \langle \Psi | H | \Psi \rangle \approx \langle \Phi | \hat{H}_{eff}(\hat{\rho}) | \Phi \rangle = E[\hat{\rho}]$$

Based on the philosophy of Bethe, Goldstone, and Brueckner, one has a density dependent interaction in the nuclear interior $E(\rho)$

At present, the ansatz for $E(\rho)$ is phenomenological:

- Skyrme: non-relativistic, zero range
- Gogny: non-relativistic, finite range (Gaussian)
- CDFT: Covariant density functional theory

Skyrme EoS (standard form)

Effective interaction in standard form

$$V(\mathbf{r}_{1}, \mathbf{r}_{2}) = t_{0} (1 + x_{0}P_{\sigma}) \,\delta(\mathbf{r}) \qquad \text{central term} \\ + \frac{1}{2}t_{1} (1 + x_{1}P_{\sigma}) \left[\mathbf{P}^{'2}\delta(\mathbf{r}) + \delta(\mathbf{r})\mathbf{P}^{2} \right] \\ + t_{2} (1 + x_{2}P_{\sigma}) \mathbf{P}^{'} \cdot \delta(\mathbf{r})\mathbf{P} \qquad \text{non-local terms} \\ + \frac{1}{6}t_{3} (1 + x_{3}P_{\sigma}) \left[\mathbf{\rho}(\mathbf{R}) \right]^{\sigma} \delta(\mathbf{r}) \qquad \text{density-dependent term} \\ + iW_{0}\boldsymbol{\sigma} \cdot \left[\mathbf{P}^{'} \times \delta(\mathbf{r})\mathbf{P} \right] \qquad \text{spin-orbit term}. \\ \mathbf{r} = \mathbf{r}_{1} - \mathbf{r}_{2}, \qquad \mathbf{R} = \frac{1}{2}(\mathbf{r}_{1} + \mathbf{r}_{2}), \\ \mathbf{P} = \frac{1}{2i} (\nabla_{1} - \nabla_{2}), \qquad \mathbf{P}^{'} \text{ cc of } \mathbf{P} \text{ acting on the left} \end{cases}$$

and

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2, \qquad P_{\boldsymbol{\sigma}} = (1 + \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)/2.$$

Modifications can be introduced and are referred as non-standard form.

Skyrme EoS (standard form)

Within the standard form, the total energy density is

 $\mathcal{H} = \mathcal{K} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so} + \mathcal{H}_{sg} + \mathcal{H}_{Coul}$

where $\mathcal{K} = \frac{\hbar^2}{2m}\tau$ is the kinetic-energy term, \mathcal{H}_0 a zero-range term, \mathcal{H}_3 the densitydependent term, \mathcal{H}_{eff} an effective-mass term, \mathcal{H}_{fin} a finite-range term, \mathcal{H}_{so} a spin-orbit term and \mathcal{H}_{sg} a term due to the tensor coupling with spin and gradient.

$$\mathcal{H}_{0} = \frac{1}{4} t_{0} \left[(2 + x_{0}) \rho^{2} - (2x_{0} + 1) (\rho_{p}^{2} + \rho_{n}^{2}) \right],$$

$$\mathcal{H}_{3} = \frac{1}{24} t_{3} \rho^{\sigma} \left[(2 + x_{3}) \rho^{2} - (2x_{3} + 1) (\rho_{p}^{2} + \rho_{n}^{2}) \right],$$

$$\mathcal{H}_{eff} = \frac{1}{8} \left[t_{1} (2 + x_{1}) + t_{2} (2 + x_{2}) \right] \tau \rho \qquad (t_{0}, t_{1}, t_{2}, t_{3}, x_{0}, x_{1}, x_{2}, x_{3}, \sigma + \frac{1}{8} \left[t_{2} (2x_{2} + 1) - t_{1} (2x_{1} + 1) \right] (\tau_{p} \rho_{p} + \tau_{n} \rho_{n}),$$

$$\mathcal{H}_{fin} = \frac{1}{32} \left[3t_{1} (2 + x_{1}) - t_{2} (2 + x_{2}) \right] (\nabla \rho)^{2} - \frac{1}{32} \left[3t_{1} (2x_{1} + 1) + t_{2} (2x_{2} + 1) \right] \left[(\nabla \rho_{p})^{2} + (\nabla \rho_{n})^{2} \right],$$

$$\mathcal{H}_{so} = \frac{1}{2} W_{0} \left[J \cdot \nabla \rho + J_{p} \cdot \nabla \rho_{p} + J_{n} \cdot \nabla \rho_{n} \right],$$

$$\mathcal{H}_{sg} = -\frac{1}{16} \left(t_{1}x_{1} + t_{2}x_{2} \right) J^{2} + \frac{1}{16} \left(t_{1} - t_{2} \right) \left[J_{p}^{2} + J_{n}^{2} \right].$$

E. Chabanat et al., NPA 627, 710 (1997)

Skyrme EoS

• The total energy density in another form is

$$\mathscr{E}(\rho) = \frac{\hbar^2}{2m} \tau + C_0 \rho^2 + D_0 \rho_3^2 + C_3 \rho^{\sigma+2} + D_3 \rho^{\sigma} \rho_3^2 + C_{eff} \rho \tau + D_{eff} \rho_3 \tau_3 + C_{surf} (\nabla \rho)^2 + D_{surf} (\nabla \rho_3)^2, \qquad (2)$$

 $\rho = \rho_n + \rho_p \qquad \rho_3 = \rho_n - \rho_p$ $\tau = \tau_n + \tau_p \qquad \tau_3 = \tau_n - \tau_p,$

with ρ_i and τ_i (i = p, n, for protons and neutrons) particles and kinetic energy density, respectively.

$$C_{3} = \frac{1}{16}t_{3},$$

$$D_{3} = -\frac{1}{48}t_{3}(2x_{3}+1),$$

$$D_{0} = -\frac{1}{8}t_{0}(2x_{0}+1),$$

$$C_{\text{eff}} = \frac{1}{16}[3t_{1}+t_{2}(4x_{2}+5)],$$

$$D_{\text{surf}} = -\frac{1}{64}[3t_{1}(2x_{1}+1)+t_{2}(2x_{2}+1)],$$

$$D_{\text{eff}} = -\frac{1}{16}[t_{1}(2x_{1}+1)-t_{2}(2x_{2}+1)],$$

$$C_{\text{surf}} = \frac{1}{64}[9t_{1}-t_{2}(4x_{2}+5)],$$

Ad.R. Raduta et al., EPJA 50, 24 (2014)

EoS(T=0) and symmetry energy

Associate the nuclear properties with Skyrme EoS

- **1.** Saturation density ρ_0
- **2.** Energy per nucleon $E/A(\rho_0)$
- 3. Incompressibility K_0
- 4. Isoscalar effective mass m_S^*
- 5. Isovector effective mass m_V^*
- 6. Symmetry energy J
- 7. Slope of the symmetry energy L
- 8. isoscalar surface term G_S
- 9. Isovector surface term G_V

9

The parameters can be determined $(t_0, t_1, t_2, t_3, x_0, x_1, x_2, x_3, \sigma)$

Skyrme EoS adopted

SAMi-J:

X. Roca-Maza, G. Colò, H. Sagawa, Phys. Rev. C 86, 031306(R) (2012);
X. Roca-Maza *et al.*, Phys. Rev. C 87, 034301 (2013).

Effective interaction	J [MeV]	L [MeV]	Effective interaction	J [MeV]	L [MeV]
asy-soft	30	14.8	SAMi-J27	27	29.9
asy-stiff	30.5	79	SAMi-J31	31	74.5
asy-superstiff	30.5	106	SAMi-J35	35	115.2

SAMi-J:

changing the symmetry energy slope

Taking SAMi-J31 as a reference: consider interactions with different

- symmetry energy
- incompressibility
- effective mass
- n/p effective mass splitting
- surface terms

H.Zheng, S.Burrello, M.Colonna, D.Lacroix and G.Scamps, PRC 98, 024622 (2018)
H.Zheng, S.Burrello, M.Colonna, V.Baran, PLB 769, 424 (2017)
S.Burrello, M.Colonna, H.Zheng, Frontiers in Physics, Vol. 7, 53 (2019)

Skyrme EoS adopted

No.	EOS	$\rho_0 ({\rm fm}^{-3})$	E_0 (MeV)	K_0 (MeV)	J (MeV)	L (MeV)	m_s^*/m	m_v^*/m	f_I	G_S	G_V	Result
	SAMi-J27	0.160	- 15.93	245	27	30	0.675	0.664	-0.0251	149.2	- 8.6	Fusion
S 1	SAMi-J31	0.156	- 15.83	245	31	74	0.675	0.664	- 0.0251	140.9	3.1	Fusion
	SAMi-J35	0.154	- 15.69	245	35	115	0.675	0.664	-0.0251	131.1	15.4	Fission
S 2	J27	0.156	- 15.83	245	27	30	0.675	0.664	-0.0251	140.9	3.1	Fusion
S 3	J35	0.156	-15.83	245	35	115	0.675	0.664	-0.0251	140.9	3.1	Fusion
	Gs35	0.156	- 15.83	245	31	74	0.675	0.664	-0.0251	131.1	3.1	Fission
	J35_Gs35	0.156	- 15.83	245	35	115	0.675	0.664	-0.0251	131.1	3.1	Fission
	J35_Gv35	0.156	- 15.83	245	35	115	0.675	0.664	- 0.0251	140.9	15.4	Fusion
	J35_Gs35Gv35	0.156	- 15.83	245	35	115	0.675	0.664	-0.0251	131.1	15.4	Fission
S 4	K200	0.156	-15.83	200	31	74	0.675	0.664	-0.0251	140.9	3.1	Fission
S 5	K290	0.156	-15.83	290	31	74	0.675	0.664	-0.0251	140.9	3.1	Fusion
S6	ms085	0.156	-15.83	245	31	74	0.85	0.832	-0.0251	140.9	3.1	Fusion
S7	ms100	0.156	-15.83	245	31	74	1.0	0.976	-0.0251	140.9	3.1	Fusion
	Gs35_ms085	0.156	- 15.83	245	31	74	0.85	0.832	-0.0251	131.1	3.1	Fusion
	Gs35_ms100	0.156	- 15.83	245	31	74	1.0	0.976	-0.0251	131.1	3.1	Fusion
S 8	fI020	0.156	-15.83	245	31	74	0.675	0.781	0.20	140.9	3.1	Fusion
S 9	fIn024	0.156	-15.83	245	31	74	0.675	0.581	-0.24	140.9	3.1	Fusion
	Gs35_fI020	0.156	- 15.83	245	31	74	0.675	0.781	0.2	131.1	3.1	Fission
	Gs35_fIn024	0.156	- 15.83	245	31	74	0.675	0.581	-0.24	131.1	3.1	Fission

The units of G_s and G_V are $MeVfm^5$

The EoS name follows the convention that we only label the terms which are different with respect to the ingredients of the SAMi-J31 parametrization.

Skyrme EoS adopted

No.	EOS	t_0	t_1	<i>t</i> ₂	<i>t</i> ₃	<i>x</i> ₀	x_1	<i>x</i> ₂	x_3	σ
	SAMi-J27	-1876.09	481.087	-75.7069	10184.6	0.482235	-0.557967	0.213066	1.00219	0.254634
S 1	SAMi-J31	-1844.28	460.727	-110.200	10112.4	-0.0237088	-0.458608	-0.431251	0.00764843	0.268372
	SAMi-J35	-1799.53	436.229	-144.972	9955.45	-0.443908	-0.343557	-0.783861	-0.882427	0.284323
S 2	J27	-1844.27	460.727	-110.200	10112.4	0.478794	-0.458608	-0.431252	1.012559	0.268374
S 3	J35	-1844.27	460.727	-110.200	10112.4	-0.461008	-0.458608	-0.431252	-0.879839	0.268374
	Gs35	-1844.28	434.803	-84.2766	10112.4	-0.0237087	-0.456140	-0.410106	0.00764882	0.268374
	J35_Gs35	-1844.27	434.803	-84.2767	10112.4	-0.461008	-0.456140	-0.410106	-0.879839	0.268374
	J35_Gv35	-1844.27	460.727	-175.617	10112.4	-0.461008	-0.352118	-0.736234	-0.879839	0.268374
	J35_Gs35Gv35	-1844.27	434.803	-149.694	10112.4	-0.461008	-0.343301	-0.777144	-0.879839	0.268374
S4	K200	5698.04	460.727	-110.200	-36164.8	0.0177978	-0.458608	-0.431251	0.00764843	-0.0421665
S 5	K290	-1295.07	460.727	-110.200	8342.72	-0.0370067	-0.458608	-0.431251	0.00764843	0.578726
S6	ms085	-1696.12	406.841	-271.859	11451.3	-0.105374	-0.453125	-0.472133	-0.281046	0.354121
S7	ms100	-1654.78	375.621	-365.519	12510.9	-0.130771	-0.449229	-0.479273	-0.397744	0.388782
	Gs35_ms085	-1696.12	380.917	-245.935	11451.3	-0.105374	-0.449935	-0.469195	-0.281046	0.354121
	Gs35_ms100	-1654.78	349.697	-339.596	12511.0	-0.130771	-0.445466	-0.477691	-0.397744	0.388782
S 8	fI020	-1844.27	460.727	-349.145	10112.4	0.144457	-0.588264	-0.991579	0.514540	0.268374
S 9	fIn024	-1844.27	460.727	117.911	10112.4	-0.184250	-0.334830	-2.015208	-0.476261	0.268374
	Gs35_fI020	-1844.27	434.803	-323.221	10112.4	0.144457	-0.593527	-1.031006	0.514540	0.268374
	Gs35_fIn024	-1844.27	434.803	143.834	10112.4	-0.184250	-0.324982	-1.742118	-0.476261	0.268374

The EoS name follows the convention that we only label the terms which are different, with respect to the ingredients of the SAMi-J31 parametrization.

Inelasticity and time scales at low-energy nuclear reactions

Low-energy reaction mechanisms: a study within mean-field models

- Fusion vs Quasi-fission or Deep Inelastic
- Charge equilibration

(Fermi energies)

- Fragmentation
- Fragment isotopic composition
- Phase transition

(Beyond) Mean-field models and effective interactions

Charge equilibration and dipole oscillations: dependence on the effective interaction

H. Zheng et al. / Physics Letters B 769 (2017) 424-429

t=0 fm/c

t=90 fm/c

t=180 fm/c

t=270 fm/c

t=360 fm/c

A2 (0)

• The DD emission looks sensitive to E_{sym} at $\rho = 0.6 \rho_{sat}$

 $P_{\gamma} \approx D_0^2 E_{centr}^3 \tau_{coll}$ (damped harmonic oscillator)

- Larger strength seen in the MD case
- damping connected to n-n collision time (τ_{coll})

The pre-equilibrium dipole strength in ¹³²Sn+⁵⁸Ni, 10 MeV/A

H. Zheng et al. PLB 769, 424, 2017

TDHF simulations process

Important parameters

Mass/Charge:

Projectile (N_P, Z_P)

Target (N_T, Z_T)

Impact parameter: b

$$\implies L = r \land p = bp_{ini}$$

Beam Energy: E_B/A $E_B^{Fus}\simeq 5~MeV.A$

Fusion vs Quasi-fission: TDHF simulations

The frozen HF barrier for ${}^{40}Ca$ is $V_B = 199.13 MeV$

Sensitivity of sub-barrier fusion cross-section to EoS ingredients

Fusion vs Quasi-fission: TDHF simulations

1.8

1.6

1.0

0.8

1.8

1.6

 $\sigma_{fusion}/\sigma_{bas}$

 $\sigma_{fusion}/\sigma_{bas}$ 1.0 0.8 54 52 56 58 46 48 50 E_{c.m.} (MeV)

Sensitivity of sub-barrier fusion cross-section to EoS ingredients

SV-mas07

SV-mas08

SV-mas10 SV-sym28

SV-sym30

SV-sym32

(a)

(b)

SV-sym34

SV-K218

SV-K226

SV-K241 SV-kap00

60

62

64

-- SV-kap20

SV-kap60

.....

P.-G. Reinhard et al. PRC 93, 044618 (2016)

Fusion vs Quasi-fission: TDHF simulations

 $^{238}U + ^{40}Ca$ at $E_{cm} = 203 MeV$

At the threshold between fusion and quasi-fission

 ^{238}U is deformed:

Quasi-fission is observed for the tip configuration

The frozen HF barrier for ${}^{40}Ca$ is $V_B = 199.13 MeV$

Quadrupole moment evolution

$$Q_2(t) = \langle 2x^2 - y^2 - z^2 \rangle$$

x axis: beam direction

• SAMi-J35 shows different result from J35 (Larger effects are due to the surface term)

 Isoscalar surface term —> large effect (Gs reduced, favor the formation of more elongated configuration)

Isovector surface term —> tiny effect

Side collisions, b=0 fm

$^{238}U + ^{40}Ca$ at $E_{cm} = 203 MeV$

Incompressibility effects

- Smaller K₀, easier to compress and expand
- Smaller K₀, larger amplitude density oscillations, helps the system to fission

At the compression stage, the smaller K₀ corresponds to the smaller quadrupole moment

• With increased effective mass, jump from quasi-fission to fusion

H.Zheng, S.Burrello, M.Colonna, D.Lacroix and G.Scamps, PRC 98, 024622 (2018) H.Zheng, S.Burrello, M.Colonna, V.Baran, PLB 769, 424 (2017)

- For fl>0, leads to larger neutron repulsion, in addition to symmetry energy
- For fI<0, tends to counterbalance symmetry energy effects but enhance the Coulomb repulsion

Conclusions

- Dissipative reactions at low energies open the opportunity to learn about fundamental properties of the nuclear effective interaction of interest also in the astrophysical context
- Competition between fusion and quasi-fission In ⁴⁰Ca + ²³⁸U reactions at energies close to the Coulomb barrier an important sensitivity is observed to nuclear EoS properties: surface - incompressibility – effective mass – symmetry energy

Thank you for your attention