

Enhanced production of ⁹⁹Mo in inverse kinematics heavy ion reactions

Justin Mabiala Prairie View A&M University

HINPw6 – 14-16 May 2021

6th Workshop of the Hellenic Institute of Nuclear Physics

OUTILNE

- Introduction
- Experiment
- Data Analysis
- Results and Discussion
- Summary

INTRODUCTION

MethodologyRadioisotope production
using inverse kinematics

- Successful test of production of the theranostic radionuclide ⁶⁷Cu (T_{1/2} = 62 h)
- Reaction of a ⁷⁰Zn beam at 15 MeV/A with a hydrogen gas target
- ⁶⁷Cu alongside other coproduced isotopes, collected after the gas target on an Al catcher foil and radioactivity measured by off-line γ-ray analysis.
- Use of secondary emitted particles from the primary nuclear reaction to irradiate other targets

INTRODUCTION

- Investigation of alternative production method for important isotopes for nuclear medicine in high demand worldwide
- Production in reactors not enough to supply the demand
- ⁹⁹Mo/^{99m}Tc generator: world demand estimated to ~ 7 kCi/week
- ^{99m}Tc: 140 keV γ-ray emitter (I_γ = 89%, T_{1/2} = 6.01 h) considered to be ideal radiotracer and used in ~85% of all nuclear medicine diagnostic scans worldwide
- ^{99m}Tc is produced via β -decay from ⁹⁹Mo (T_{1/2} = 65.94 h)
- Other accelerator-made of ⁹⁹Mo/^{99m}Tc : ¹⁰⁰Mo(p,2n)^{99m}Tc and ¹⁰⁰Mo(p,pn)⁹⁹Mo

INTRODUCTION

- Cross-section estimates from TALYS for different channels.
- Nucleon transfer on a ⁴He gas target produces resonances in ⁵He (⁵Li), and possibly high cross-section
- ¹⁰⁰Mo+⁴He→⁵He (⁵Li)+⁹⁹Mo
 (⁹⁹Nb) Q=-9.2MeV (-13.1 MeV)

https://tendl.web.psi.ch/tendl_2019/tendl2019.html

EXPERIMENT

Experimental Setup

*HAVAR[®] - High strength non-magnetic alloy foil Co 42.0% Mo 2.2% Cr 19.5% Mg 1.6% Ni 12.7% C 0.2% W 2.7% Fe Balance

Souliotis et al., Appl. Radiat. Isot. 149 (2019) 89-95

Experimental Specifications

Irradiation

- ¹⁰⁰Mo (12 MeV/A) at an average charge state of 35⁺
- 3 different runs
 - Source 1 (102 torr, 0.07 pnA, 11h35)
 - Source 2 (213 torr, 0.21pnA, 10h28);
 - Source 3 (1008 torr, 0.17 pnA, 7h52)
- Beam current was periodically monitored and was nearly constant (within 15%)

Off-line γ -ray analysis

- HPGe detector
- Al foil @ d = 50 mm
- dead time 2-3%
- Energy resolution 2.5–4.0 keV (FWHM)

DATA ANALYSIS

γ –spectra from from source 3

Activity after irradiation

γ –spectra from 3 runs with different He gas densities

Activity after irradiation

$$R_{AI} = R_M e^{\lambda t_{dk}} \frac{\lambda \Delta t_R}{(1 - e^{-\lambda \Delta t_R})} \frac{\lambda t_{irr}}{(1 - e^{-\lambda t_{irr}})}$$

Net Activity = Activity produced per beam intensity unit and irradiation time

$$H_{AI} = \frac{R_{AI}}{I_{beam} t_{irr}}$$

Activities for different isotopes of interest

 Identified using their strongest and independent γ-lines

¹⁰⁰Mo+⁴He→⁵He (⁵Li)+⁹⁹Mo (⁹⁹Nb) Q=-9.2 MeV (-13.1 MeV)

¹⁰⁰Mo+²⁷Al→²⁸Al(²⁸Si,²⁸Mg)+⁹⁹Mo(⁹⁹Nb,⁹⁹Tc) Q=-0.57 MeV(0.4MeV,-1.0 MeV)

¹⁰⁰Mo+⁴He \rightarrow ²⁴Na+⁸⁰As (Q=-3.1 MeV) ¹⁰⁰Mo+²⁷Al \rightarrow ²⁴Na+¹⁰³Ru (Q=-7.7 MeV)

¹⁰⁰Mo+⁴He→n+¹⁰³Ru Q=-4.6 MeV

Activities for different isotopes of interest

 Identified using their strongest and independent γ-lines

¹⁰⁰Mo+⁴He→⁵He (⁵Li)+⁹⁹Mo (⁹⁹Nb) Q=-9.2 MeV (-13.1 MeV)

¹⁰⁰Mo+²⁷Al→²⁸Al(²⁸Si,²⁸Mg)+⁹⁹Mo(⁹⁹Nb,⁹⁹Tc) Q=-0.57 MeV(0.4 MeV,-1.0 MeV)

¹⁰⁰Mo+⁴He \rightarrow ²⁴Na+⁸⁰As (Q=-3.1 MeV) ¹⁰⁰Mo+²⁷Al \rightarrow ²⁴Na+¹⁰³Ru (Q=-7.7 MeV)

¹⁰⁰Mo+⁴He \rightarrow n+¹⁰³Ru Q=-4.6 MeV

SUMMARY

- This work has demonstrated the feasibility and advantages of using inverse kinematics to produce ⁹⁹Mo and other isotopes.
- A gas target and a catcher have been used for production.
- Neutrons produced in the forward direction could be used to irradiate other targets and produce a variety of radioisotopes of interest.
- Production could also be determined for neutrons in coincidence with heavy fragments detected in MARS.
- Currently working on the extraction of cross-sections to compare to data if available and to theoretical models.

Collaboration

Cyclotron Institute, Texas A&M University, USA

Dr. Aldo Bonasera Dr. Marcia R. D. Rodrigues Dr. Victor E. Iacob Dr. Ninel Nica Dr. Brian Roeder Dr. Gabriel C. Tabacaru K. Wang J. Romo University of Athens, Greece
Dr. George Souliotis
HMRI, Houston Methodist Hospital, USA
Dr. Max Yu
Dr. P. Zanotti-Fregonara
Praire View, Texas A&M University, USA
Dr. Justin Mabiala

Thank you for your attention

Back up slides

Reactors	Fission of ²³⁵ U	$n+^{235}U \rightarrow ^{99}Mo + xn + other fission products$							
	Neutron activation of 98Mo	n + ⁹⁸ Mo→ ⁹⁹ Mo							
Accelerators	Photo-fission of ²³⁸ U	Photon+ ${}^{238}U \rightarrow {}^{99}Mo + xn + other fission products$							
	¹⁰⁰ Mo transmutation	Photon + ${}^{100}Mo \rightarrow {}^{99}Mo$ + n							
	Direct 99mTc production	$P + {}^{100}Mo \rightarrow {}^{99m}Tc + 2n$							

Table 3. The various technological options for the production of ^{99m}Tc/⁹⁹Mo

Experimental Set up

Cryogenic gas cell

Dewar-

CYCLOTRON INSTITUTE

Experimental Set up

Medical Isotopes: Metals offer many options

1 Hydrogen 1.008		PET Beta Therapy														Helium 4.0026	
Lithium	Be	SPECT - Alpha Therapy Auger e ⁻ Therapy											Carbon	Nitrogen	Oxygen	Fluorine	Neon
Na Sodium	12 Mg Magnesium		Augence Interapy 10.81 12.011 14.007 15.000 18.008 20.1 13 14 16 16 17 16 Al Si P S CI A Aluminium Silicon Phasphorus Sulfur Channe Arg														18 Argon
19 K Potassium	24.306 20 Calcium	Scandlury	22 Ti Titanium	Vanadium	Chromium	Mn Manganese	Fe Iron	27	28 Ni Nickel	Cuper	Zn Zinc	Callum Gallum	Sermanium	30.974 Arsenio	32.08 34 Selenium	35.45 Br Bromine	39.948
37 Rb Rubidium 85.465	Strontion Strontion	VBrun VBrun	40 Zr Zrcontur P1 22420	AT Nobium 92,908	42 Mo Molybdenum 95.95	43 TC Technetium	44 Ru Ruthenium 101.07(2)	40 Rh Rhodium	46 Pd Palladium	47 Ag Silver 107.87	45 Cd Cadmium 112.41	49 In Indium	50 Sn Tin 118.71	Sb Antimony 121.78	52 Te Tellurium 127 00(3)	SJ Lodine	S4 Xe Xenon 131.20
Caesium 132.91	56 Ba Barium 137.33	57-71 *	72 Hf Hafnium 178.49(2)	Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 180.21	76 Os Osmium 20.23(3)	77 Ir Iridium 192.22	Platinum 195.08	79 Au Gold 196.97	BO Hg Mercury 200.59	Thatility Thatility	Pb Lead 207/2	Bismut 208,98	Polonium	At Astatine	Radon
Francium	Radium	89-103 **	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Mt Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	TS Tennessine	Oganessor

*Lanthanoids	La Lanthanum 138.91	Cerium 140.12	Praseodymum 140.91	Neodymium 144.24	Promethium	62 Samarium 150.30(2)	63 Europium 151.96	Gadolinium 157.25(3)	erbiurn 150 p3	Dysprosition 162,50	Holmium Holmium	Erbium	69 Tm Thulium 165.93	Ytterbium 173.05	Lutefium 174.97
**Actinoids	Actinium	Thorium 232.04	Protactinium 231.04	92 U Uranium 238.03	Neptunium	Plutonium	Americium	Curium	BR Berkelium	Californium	99 Es Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

T.I. Kostelnik and C. Orvig, Chem. Rev. 2019, 119, 902-956

Energy threshold and Q-value

For an interaction of projectile nuclei of mass m_1 , and target nuclei of mass m_2 , the Q-value (Q [MeV]) is defined as:

$$Q = m_1 \cdot c^2 + m_2 \cdot c^2 - \sum_i m_i \cdot c^2$$
 (2.13)

where m_i denotes the mass of *i*-th produced nucleus. Obviously, for elastic scattering, Q = 0. For other processes, two cases are possible:

- *Q* < 0 then the reaction is endo-energetic, and the final system has higher mass (that has to be delivered in the form of kinetic energy of colliding particles),
- Q > 0 then the reaction is exo-energetic, and the final system has lower mass.

The exo-energetic reaction may occur at any energy. For the endo-energetic reaction, a laboratory energy limit, called threshold energy (E_{thr}), sets the minimum energy needed for the reaction to occur. The laboratory energy threshold can be calculated from the conservation of momentum and energy to link it with Q-value:

$$E_{thr} = |Q| \cdot \left(1 + \frac{m_1}{m_2}\right) \tag{2.14}$$