Hellenic Institute of Nuclear Physics (HINP) 1st one day Workshop on New Aspects and Perspectives in Nuclear Physics

Elastic scattering of ²⁰Ne+²⁸Si at near barrier energies

Soukeras Vasileios Nuclear Physics Laboratory Physics Department, University of Ioannina

> 8th of September, 2012 Ioannina, Greece

Motivation

- Elastic scattering of heavy ions is the main tool for investigating the optical model potential.
- Especially for projectiles like ¹²C and ¹⁶O, due to clustering, coupling effects to the elastic scattering are significant and appear as an increase in cross sections at backward angles, which for projectiles with a simple structure is not observable.
- Coupling effects due to cluster of the target are also significant. In that case, it is known that there is a limit on Z where this anomaly stop to exist.

Motivation

 So, the question is if the increase of cross section at backward angles is persistent for heavier projectiles.

 Angular distribution measurements of elastic scattering for the system
²⁰Ne+²⁸Si were performed at 3 near barrier energies.

Experimental setup

- The experimental setup was visualized in ICARE facility of the H.I.L. (Warsaw).
- ICARE consists of a big chamber with various facilities for setting up numerous detectors. In this respect, the chamber includes two platforms (A,B) and several rings that allow us to place many detectors.

Experimental setup

7	Distance from the		
Detector	target (cm)		
M1	31.5		
M2	31.5		
T1	11.5		
T2	11.5		
T3	11.4		
S1	11.1		
S2	11.5		
S 3	11.5		
S4	11.5		
S5	11.6		
S6	13.5		
S7	11.6		

Identification of Elastic channel

Cross sections calculations

 $\sigma = \frac{N}{(D\Phi)\Omega}$

> The cross section is given by the formula:

The (DΦ) quantity is calculated via monitors' information by the known Rutherford scattering:

$$(D\Phi) = \frac{N_{monitor}}{\sigma_{Ruth}\Omega_{monitor}}$$

The Ω quantity was calculated by the known activity of ²⁴¹Am source that is given by the formula:

$$\Omega = \frac{4\pi}{R} \frac{N_{\alpha l p has}}{t} = \frac{4\pi}{(40000 Bq)} \frac{N_{\alpha l p has}}{t}$$

Cross sections calculations

> Define as: $f = \sigma/\sigma_{Ruth}$. Then, the uncertainties were calculated via the following formula:

Elastic scattering 52.3MeV

 Elastic scattering data for ²⁰Ne + ²⁸Si at energy of 52.3 MeV.

A FRESCO calculation is performed, where Set 1 and Set 2 are the sets by a phenomenological Woods-Saxon potential without and with oscillations respectively. The Set 3 is a set with Christensen potential as the real part.

Optical potential parameters

	Set 1	Set 2	Set 3
V (MeV)	24.63	23.76	20.41
r _{oR} (fm)	1.432	1.402	1.268
α _R (fm)	0.361	0.419	0.570
W (MeV)	11.43	7.25	2.44
r _{ol} (fm)	1.250	1.111	1.190
α _ι (fm)	0.361	0.160	0.160

Elastic scattering 70.0MeV

Elastic scattering data
for ²⁰Ne + ²⁸Si at energy of
70 MeV.

A FRESCO calculation is performed, where Set 1 and Set 2 are the sets by a phenomenological Woods-Saxon potential without and with oscillations respectively. The Set 3 is a set with Christensen potential as the real part.

Optical potential parameters

	Set 1	Set 2	Set 3
V (MeV)	32.88	32.48	20.41
r _{oR} (fm)	1.275	1.328	1.268
α _R (fm)	0.415	0.347	0.570
W (MeV)	21.50	7.25	8.06
r _{ol} (fm)	1.235	1.111	1.190
α _l (fm)	0.415	0.160	0.160

Elastic scattering 42.5MeV

 Elastic scattering data for ²⁰Ne + ²⁸Si at energy of 42.5 MeV.
A FRESCO calculation by a free phenomenological Woods-Saxon potential is designated with the dotted-dashed line.

Optical potential parameters

24.63	
1.432	
0.361	
11.43	
1.250	
0.361	

Explanation of the oscillations through coupling mechanisms

- Assuming that 2 sequential alphas are transferred from the target to projectile, the results were not satisfactory.
- On the other hand, a whole ⁸Be transfer between ²⁰Ne and ²⁸Si can explain such a behavior.
- These advanced calculations are still in progress by N.Keeley.

Conclusions

From the study of the elastic scattering of ²⁰Ne + ²⁸Si at energies of 42.5, 52.3 and 70MeV, the following conclusions can be drawn:

1. The cross section at backward angles and at near barrier energies appear an anomalous increase, as the lighter projectiles ¹²C and ¹⁶O do.

2. This increase can be explained by assuming elastic transfer of a ⁸Be cluster between ²⁰Ne and ²⁸Si.

3. Phenomenological Woods-Saxon potentials were determined for the lower energies.

4. We can't ignore the fact that: the statistical errors were significant and the angular distribution was limited to a selected angular range. So, it is necessary a further investigation of that system principally at backward angles, using inverse kinematics to increase the cross section.

Collaborators

- ✓ Department of Physics and HINP, The University of Ioannina, Ioannina, Greece
- ✓ Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
- ✓ The Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland
- Institute of Accelerating Systems and Applications and Department of Physics, University of Athens, Greece
- ✓ CEA-Saclay, DAPNIA-SPhN, Gif-sur-Yvette, France
- ✓ Departimento di Fisica and INFN Sezione di Padova, Padova, Italy
- Supported by State Scholarships Foundation and **European Union**

