Hellenic Institute of Nuclear Physics 2nd Hellenic Institute of Nuclear Physics Workshop

Elastic scattering measurements for the system ⁷Be+²⁸Si at 17.2 MeV

Onoufrios Sgouros, University of Ioannina

12th of April, 2014, Thessaloniki, Greece

Introduction

- Elastic scattering is the main tool for probing the optical potential.
- The energy dependence of the optical potential at near barrier energies is a very appealing subject.
- Well bound nuclei: Threshold Anomaly (TA).

^{6,7}Li+²⁸Si potential

• ⁶Li: The imaginary part of the optical potential presents an increasing trend as we approach the Coulomb barrier, while the real part develops smoothly until a peak appears.

K. Zerva et al., Eur. Phys. J. A. 48, 102 (2012)

Motivation

⁷ Be:The mirror weakly bound radioactive nucleus of ⁷ Li.	Nucleus	Breakup Threshold (MeV)
	⁷ Be	1.6
	⁶ Li	1.48
7 Be 7 Li	⁷ Li	2.45

Question: The energy dependence of ⁷Be optical potential behaves like the ⁷Li or ⁶Li one?

The Experiment

• In this respect, we proposed the study of elastic scattering and relevant reaction mechanisms for the system ⁷Be+²⁸Si at near barrier energies, namely 9.1 MeV, 17.2 MeV, 21.8 MeV and 26.6 MeV corresponding to $(0.78-2.3)E_{cb}$ in order to study the energy dependence of the optical potential.

The EXOTIC Facility

- The experiment was visualized at the EXOTIC facility at the Laboratori Nationali di Legnaro (LNL).
- ⁷Be production: In flight technique via the $p(^{7}Li, ^{7}Be)n$ reaction ($Q_{val.}$ =-1.64 MeV).
- High purity of the secondary beam: **Dipole** + Wien Filter.

Detection array EXPADES

- EXPADES: 8 ΔE-E_{res} telescopes in cylindrical configuration
- ΔE_1 : Ionization chamber.
- ΔE₂ detector: ~50µm thick
 DSSSD with an active area of (64x64)mm² and 32 strips per side.
- $E_{res.}$: 300µm thick DSSSD with an active area of (64x64)mm² and 32 strips per side.

A photo of EXPADES array. Each ΔE -E telescope is consisting of a ΔE_1 ionization chamber, a ΔE_2 DSSSD(50 μ m) + E_{res} DSSSD(300 μ m).

Experimental Setup

Identification of the Elastic channel

Typical 1 dimension spectrum from ΔE *stage of telescope* $C, \theta_{lab} = 14.27$ *deg at* $E_{beam} = 17.2$ *MeV.*

• The elastic scattering peak is well pronounced.

Angle and solid angle determination

• The solid angle of the detectors was determined via a run with a gold target.

 $\frac{d\sigma}{d\Omega} = \frac{N}{D\Phi\,\Omega}$

where N is the number of counts, D are the scattering centers, Φ is the flux of the beam and Ω is the solid angle of the detector.

Angular distribution data at 17.2 MeV

Preliminary angular distribution data for the quasi-elastic scattering of ${}^7Be+{}^{28}Si$ measured at 17.2 MeV are compared with a CDCC calculation. Data from telescopes C and A are denoted with the blue stars, data from telescopes F and D are denoted with the green circles while a mean value from data of symmetrical detectors is denoted with the red triangles.

Summary

- Elastic scattering measurements for the system ⁷Be+²⁸Si were performed at near barrier energies namely 9.1 MeV, 17.2 MeV, 21.8 MeV and 26.6 MeV corresponding to (0.78-2.3)E_{cb}.
- Preliminary angular distribution data were presented 17.2 MeV.
- The analysis is in progress...

Collaborators

- Department of Physics and HINP, The University of Ioannina, Ioannina, Greece
- Departimento di Fisica and INFN Sezione di Padova, Padova, Italy
- INFN Sezione di Napoli, Napoli, Italy
- *INFN Sezione di Milano, Milano, Italy*
- Dipartimento di Scienze Fisiche, Universita di Napoli, Napoli, Italy
- Institute of Accelerating Systems and Applications and Department of Physics, University of Athens, Greece
- Departamento di Fisica Aplicada, Universidad de Huelva, Huelva, Spain
- Centro de Fisica Nuclear da Universidade de Lisboa, Portugal
- National Center for Nuclear Research, Warsaw, Poland
- Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland

