Vertical profile of ²¹⁰Pb, ¹³⁷Cs and ⁴⁰K in Algerian soil samples

Alexis Papamichail

M. Antoniou, M. Nadri, A. Ioannidou

Nuclear Physics and Elementary Particle Physics Division,Physics Department, Aristotle University of Thessaloniki, Greece

Απρίλιος 2014

• The first goal is to define the level of contamination due to nuclear weapon tests and nuclear accidents (¹³⁷Cs)

• The second goal is to define the sedimentation rate of soil layers (²¹⁰Pb: $t_{1/2}$ =22.6y, ¹³⁷Cs: $t_{1/2}$ =30.4y)

Challenging...

• the opportunity to study samples near Sahara Desert

Radioactivity

Natural

Primordial (e.g.²²⁶Ra, ²³⁵U, ²³⁸U, ²³²Th, ⁴⁰ K, ⁸⁷Rb) and cosmogenic (e.g.³H,⁷Be, ¹⁴C, ⁸¹Kr) radionuclides

Artificial Anthropogenic radionuclides (e.g. ¹²⁹I,¹³⁷Cs, ²³⁹Pu)

- Nuclear accidents
- Weapon tests
- Industry
- Medical

²¹⁰Pb radioisotope

Product of ²²²Rn decay with half-life $t_{1/2}$ =22.26y

- ²²²Rn (t ½= 3,8 d) inert daughter gas of
 ²²⁶Ra, diffuses into the atmosphere
 coming out from ground minerals before
 their decay
- Escape of ²²²Rn out of the soil depends on:

Mineralogical nature of the parental ²²⁶Ra Porosity of the soil Humidity of the soil

 Finally: ²²²Rn decays through a short-life series of Polonium, Lead and Bismuth isotopes into ²¹⁰Pb

Decay series of ²³⁸U

	coay conce of	
	Uranium series	
Nuclide	Half-life	Radiation
²³⁴ Th	24 days	β,γ
^{234m} Pa	1.2 min	β,γ
²³⁴ U	2.5x10 ⁵ years	α ,γ
²³⁰ Th	8.0x10 ⁴ years	α ,γ
²²⁶ Ra	1.622 years	α ,γ
²²² Rn	3.8 days	α ,γ
²¹⁸ Po	3.05 min	α
²¹⁴ Pb	26.8 min	β,γ
²¹⁸ At	1.5-2.0 sec	α
²¹⁴ Bi	19.7 min	β, α
²¹⁴ Po	1.64x10 ⁻⁴ s	α ,γ
²¹⁰ Tl	1.3 min	β ,γ
²¹⁰ Pb	22 years	β ,γ
²¹⁰ Bi	5.0 days	β,α
²¹⁰ Po	138 days	α ,γ
²⁰⁶ TI	4.2 min	β
²⁰⁶ Pb	Stable	
· · · · · · · · · · · · · · · · · · ·		

²¹⁰Pb at the ground

- **Mineral ²¹⁰Pb:** trapped within a mineral particle in the soil due to decay of radon before escape from the particle
- Inerstitial ²¹⁰Pb: absorbed on the surface of a mineral particle due to decay of ²²²Rn after escape from the host particle, before diffusion into the atmosphere
- Fallout ²¹⁰Pb: attached to aerosol particles in the atmosphere, transport in the air and deposited on the soil through rainwater or dry deposition

210Pb strongly absorbed on the soil surface enter ground's lower layers through migration process

The transport rate of a radionuclide at the soil depth profile is of the order of some centimeters per year

- Produced when Uranium or Plutonium absorb neutrons and forced into radioactive decay
- Half-life t_{1/2}= 30.17 y
- Sources of ^{137}Cs : \implies nuclear weapon explosions' fallout

nuclear reactor accidents

nuclear reactor wastes

nuclear fuel reprocessing wastes

¹³⁷Cs at the ground

• Fallout ¹³⁷Cs **mathemathe and a set of the set of t**

Penetration depth of a nuclide at the soil profile shows the easiness for a fallout nuclide to be absorbed or uptaken by the soil

 Estimation of ¹³⁷Cs mean concentration in soil ¹³⁷Cs migration depth through the soil column

¹³⁷Cs highest concentrations upper 30 cm

• MEASUREMENTS

Detectors for ²¹⁰Pb (46.5 keV), ¹³⁷Cs (661.65 keV) and ⁴⁰K (1460.74 keV)

For ²¹⁰Pb (46,50 keV)

<u>Ge planar detector</u> with active area 2000 mm², thickness 20 mm, energy resolution (FWHM) 400 eV at 5.9 keV or 700 eV at 122 keV.

For ¹³⁷Cs (661.65 keV) and ⁴⁰K (1460.74 keV)

20% Efficiency HPGe Low background, high resolution 1.86 keV at 1.33 MeV

- Use of "box" geometry at the analysis software radius: 5.8 cm, thickness: 2 mm
- Energy calibration using source with same geometry as the sample

Soil samples

- Samples collected using geological carrot descending 2,
 3, 5 and 10 cm each time
- Sampling depth: 0 70 cm
- Sand grain size: ~ 0,4 mm
- Samples sealed into PVC boxes

Soil samples

- Ghardia: rocky area with sand
- Most of the French surface nuclear tests in 1960-1961 release radioactivity in the environment in the form of glassy materials produced by the melting of the soil or the sand near the ground zero
- Soil samples collected at the 1st of June 2012 and measured after some months
- <u>Sample 1: (S16)</u> Collected 20 km north of Ghardia region: rocky with sand
- <u>Sample 2: (S16)</u>₂

collected about 70 km northern of the collection place of $S(16)_1$ region: **porous with rocks and sand**

Sample 1: (S16)₁

Sample 2: (S16)₂

Results and discussion <u>Sample 1: (S16)</u>₁

- Samples collection area is rocky with sand ->> soil layers do not mix with each other
- rocky ground —————> movement of ²¹⁰Pb through diffusion and transport is difficult

Expect maximum concentrations at the upper layers because of the higher ²¹⁰Pb concentrations from fallout

But: observe uniform distribution of ²¹⁰Pb at lower layers also **provide** vertical movement of ²¹⁰Pb downwards

This situation is valid for the movement of radionuclides under the ground Movement length is of the order of few centimeters per year

Sample 1: (S16)₁

- at the lower layers the concentration of ²¹⁰Pb decreases
- uniform distribution again
- the reduction may be due to the rocky ground that makes the transportation of radionuclides at the lowest layers difficult

Sample 2: (S16)₂

- maximum of ²¹⁰Pb concentration at 20 50 cm
- The ground of the samples collection area is **porous with rocks and sand**

 This vertical distribution refers more to the effect of sedimentation rate (movement of the layers in the soil) and less to the vertical diffusion and dispersion of the isotope ²¹⁰Pb

Sample 1: (S16)₁

Sample 2: (S16)₂

Sample 1: (S16)₁

Sample 2: (S16)₂

Comparison of concentrations of ¹³⁷Cs and ⁴⁰K at the two samples

 Concentration values of ¹³⁷Cs and ⁴⁰K at sample 1 are lower than the corresponding values in sample 2

Explanation: the nature of the soil samples from the two areas

Soil sample 1 is rocky with sand and soil sample 2 is porous with stones and sand

• ¹³⁷Cs concentration values are smaller than most ¹³⁷Cs values observed in Europe

	<u>Sample 1</u>	<u>Sample 2</u>
¹³⁷ Cs	max: <mark>~3 Bq/kg</mark> min: ~0.2 Bq/kg	max: <mark>~6 Bq/kg</mark> min: ~4 Bq/kg
⁴⁰ K	max: <mark>~90Bq/kg</mark> min: ~75 Bq/kg	max: ~180 Bq/kg min: ~140 Bq/kg

Comparison of concentrations of ¹³⁷Cs and ⁴⁰K per sample

Depth profiles of 137 Cs and 40 K in sample 1 have almost the same format

Explanation: ¹³⁷Cs and ⁴⁰K have the same chemical behavior because are both alkalis

Move in the soil in a similar manner

Comparison of concentrations of ¹³⁷Cs and ⁴⁰K per sample

- Depth profiles of ¹³⁷Cs and ⁴⁰K in sample 2 have almost the same format
- Explanation: ¹³⁷Cs and ⁴⁰K have the same chemical behavior because are both alkalis

Move in the soil in a similar manner

Comparison of concentrations of ¹³⁷Cs and ⁴⁰K at the two samples

In sample 2

maximum of $^{\rm 137}Cs$ and $^{\rm 40}K\,$ concentration at 20 – 50 cm

explanation

Easier movement of radionuclides in the soil - porous with stones and sand

This vertical distribution refers more to the effect of sedimentation rate (movement of the layers in the soil) and less to the vertical diffusion and dispersion of the isotope ¹³⁷Cs

At sample 1 the diffusion and transport of radionuclides is more difficult and has smaller rate than sample 2

Summary

• Maximum and minimum values of the activity of the two samples:

	Sample 1	Sample 2
²¹⁰ Pb	max: ~50 Bq/kg	max: ~75 Bq/kg
	min: ~27 Bq/kg	min: ~37 Bq/kg
¹³⁷ Cs	max: ~3 Bq/kg	max: ~6 Bq/kg
	min: ~0.2 Bq/kg	min: ~4 Bq/kg
⁴⁰ K	max: ~90Bq/kg	max: ~180 Bq/kg
	min: ~75 Bq/kg	min: ~140 Bq/kg

- Similar vertical distribution profiles of ²¹⁰Pb, ¹³⁷Cs and ⁴⁰K at every sample
- ¹³⁷Cs concentration values are smaller than most ¹³⁷Cs values observed in Europe
- ➢ In sample 2, maximum of ²¹⁰Pb, ¹³⁷Cs and ⁴⁰K concentration at 20 − 50 cm

Concentration values of ²¹⁰Pb, ¹³⁷Cs and ⁴⁰K at sample 1 are lower than their corresponding values in sample 2
 Sample 1: rocky with sand and soil

Sample 2: porous with stones and sand -

Smaller diffusion and transport rates of radionuclides in soil 1

Summary

• The first goal was to define the level of contamination due to nuclear accidents (¹³⁷Cs)

¹³⁷Cs concentration values are smaller than most ¹³⁷Cs values observed in Europe

Probably due to high transferred mass rates form Sahara desert to Europe especially during spring season every year

• The second goal was to define the sedimentation rate of soil layers (210 Pb, 137 Cs)

This is our next step

The end

Thanks for your attention