The 2015 Long Range Plan for Nuclear Science

Nuclear Science Advisory Committee October 2015 USA: LRP 2007, LRP 2015 (working group of 58 members)

Europe: LRP 2010, LRP 2017

Nuclear Physics European Collaboration Committee (NuPECC) LRP for Nuclear Science in Europe

GSI-FAIR, Darmstadt, January 2017

The 2015 Nuclear Science Advisory Committee

- » Donald Geesaman (Chair) Argonne National Laboratory
- » Vincenzo Cirigliano Los Alamos National Laboratory
- » Abhay Deshpande Stony Brook University
- » Frederic Fahey Boston Children's Hospital
- » John Hardy Texas A&M University
- » Karsten Heeger Yale University
- » David Hobart Chair, American Chemical Society Division of Nuclear Chemistry and Technology
- » Suzanne Lapi Washington University
- » Jamie Nagle University of Colorado
- » Filomena Nunes Michigan State University
- » Erich Ormand Lawrence Livermore National Laboratory
- » Jorge Piekarewicz Florida State University
- » Patrizia Rossi Thomas Jefferson National Accelerator Facility
- » Jurgen Schukraft European Organization for Nuclear Research
- » Kate Scholberg Duke University
- » Matthew Shepherd Indiana University
- » Raju Venugopalan Brookhaven National Laboratory
- » Michael Wiescher Notre Dame University
- » John Wilkerson University of North Carolina, Chair of American Physical Society Division of Nuclear Physics

LRP Working Group

- » Ani Aprahamian, Notre Dame University
- » Robert Atcher, LANL Laboratory
- » Helen Caines, Yale University
- » Gordon Cates, University of Virginia
- » Jolie Cizewski, Rutgers University
- » Vincenzo Cirigliano, LANL
- » David Dean, ORNL
- » Abhay Deshpande, Stony Brook University
- » Rolf Ent, TJNAF
- » Renee Fatemi, University of Kentucky
- » Brad Filippone, California Institute of Technology
- » George Fuller, University of California- San Diego
- » Carl Gagliardi, Texas A&M University
- » Haiyan Gao, Duke University
- » Donald Geesaman (chair), ANL
- » Geoff Greene, University of Tennessee
- » John Hardy, Texas A&M University
- » Karsten Heeger, Yale University
- » David Hertzog, University of Washington
- » Calvin Howell, Duke University
- » Andrew Hutton, TJNAF
- » Peter Jacobs, LBNL
- » Xiangdong Ji, University of Maryland
- » Reiner Kruecken, TRIUMF
- » Sebastian Kuhn, Old Dominion University
- » Krishna Kumar, Stony Brook University
- » Suzanne Lapi, Washington University, St. Louis
- » Michael Lisa, Ohio State University
- » Zheng-tian Lu, ANL
- » Augusto Macchiavelli, LBNL
- » Naomi Makins, University of Illinois, Urbana-Champaign
- » Paul Mantica, Michigan State University
- » Zein-eddine Meziani, Temple University
- » Richard Milner, Massachussetts Institute of Technology
- » Berndt Mueller, BNL
- » Jamie Nagle, University of Colorado
- » Witold Nazarewicz, Michigan State University
- » Filomena Nunes, Michigan State University
- » Erich Ormand, LLNL

LRP Working Group

- » Jorge Piekarewicz, Florida State University
- » David Radford, ORNL
- » Krishna Rajagopal, Massachussetts Institute of Technology
- » Michael Ramsey-Musolf, University of Massachusetts
- » Hamish Robertson, University of Washington
- » Thomas Roser, BNL
- » Patrizia Rossi, TJNAF
- » Martin Savage, University of Washington
- » Guy Savard, ANL
- » Heidi Schellman, Oregon State University
- » Kate Scholberg, Duke University
- » Jurgen Schukraft, CERN
- » Matthew Shepherd, Indiana University
- » Julia Velkovska, Vanderbilt University
- » Raju Venugopalan, BNL
- » Steve Vigdor, Indiana University
- » Michael Wiescher, Notre Dame University
- » John Wilkerson, University of North Carolina
- » William Zajc, Columbia University
- » International Observers
- » Angela Bracco, NuPECC
- » Dong-pil Min, ANPhA
- » Agency Representatives
- » Cyrus Baktash, DOE
- » Frank (Ted) Barnes, DOE
- » Elizabeth Bartosz, DOE
- » George Fai, DOE
- » Manouchehr Farkondeh, DOE
- » Jehanne Gillo, DOE
- » Tim Hallman, DOE
- » Ken Hicks, NSF
- » Bogdan Mahalia, NSF
- » Gulsham Rai, DOE
- » Allena Opper, NSF
- » James Sowinski, DOE

2. Quantum Chromodynamics

The fundamental description of the heart of visible matter

- QCD and the structure of hadrons and nuclei
- QCD and the phases of strongly interacting matter
- Understanding the glue that binds us: The next QCD frontier in nuclear physics

 Structure of hadrons with Lattice QCD Example: Mass differences between isospin pairs of baryons (proton-neutron, for example), can be calculated from first principles at the level of one part in a thousand

 Structure of light nuclei with Lattice QCD Example: Magnetic moments of proton, neutron, deuteron, triton (3H), 3He

3D pictures of the nucleon

- New concept: Generalized parton distributions
- Computed tomography (CT) scan (minute cancer tumors, tiny broken bones, early signs of osteoporosis)

Example: 3D views of the spatial charge density of the proton

Phases of QCD matter

• Emergent phenomena

- High temperature superconductivity Strongly correlated, electromagnetically interacting matter
 Strange metal phase
- Quark gluon plasma
 Strongly interacting matter
 Color superconductor

Jetting through the quark gluon plasma

- Ernest Rutherford
 Alpha particles through gold foil
 Sometimes scattered at large angles
 Atomic nuclei discovered
- Jets: high-energy quark probes
 Sent through quark gluon plasma (RHIC, LHC)
 Look for jets or partons scattered at large angles
 Individual quarks and gluons to be seen

Nucleon spin

- Simple properties from complex QCD interactions
- Proton: composite system
 Quark and gluon constituents
- Spin of all quarks + spin of gluons
 + angular momentum of all quarks
 + angular momentum of gluons = 1/2

An evolving picture of nuclei

- Tool: electron scattering Increasing energy and momentum transfer
- Overall electric charge and magnetic moment
- Spatial distribution of electric charge and magnetization (Robert Hofstadter, Nobel 1961)
- Individual nucleons seen (Deep Inelastic Scattering; Friedman, Kendall, Taylor; Nobel 1990)
- Proliferation and saturation of gluons (Electron Ion Collider)

High-energy nuclear physics / QCD facilities

• Continuous Electron Beam Accelerator Facility (CEBAF)

Newport News, Virginia 12 GeV upgrade

Thomas Jefferson National Accelerator Facility (JLab)

• Relativistic Heavy Ion Collider (RHIC)

Upton, Long Island, New York

Brookhaven National Laboratory (BNL)

• Electron Ion Collider (EIC) future

U.S. participation abroad – Hadron physics

Europe

- Mainz, Germany
- COMPASS-II experiment at CERN
- PANDA experiment at GSI/FAIR
- Paul Scherrer Institut (PSI), Switzerland

Asia

- J-PARK facility, Japan
- BES-III facility, China
- Super-KEKB electron-positron collider, Japan

U.S. participation abroad – Heavy ion physics

 Large Hadron Collider (LHC) at CERN Heavy-ion detectors at the LHC ALICE, CMS, ATLAS

 GSI/FAIR at Darmstadt, Germany Heavy ion experiment Compressed Baryon Matter (CBM) planned

3. Nuclear Structure and Reactions

- 288 stable isotopes
- 3000 isotopes known
- >6000 isotopes predicted

- Proton drip line reached up to Z=83
- Neutron drip line reached up to Z=8
- Current upper limit Z=118, A=294

Oxygen: beyond the limits of nuclear stability

- 160 (Z=8, N=8) stable
- New magic numbers at N=14, 16 (220, 240)
- 250, 260: neutron unbound
- 26O->24O by splitting out two neutrons
 New form of radioactivity (two-neutron)
- Benchmark for ab initio models
 Two and three-nucleon forces

Nuclear structure and reactions

- ab initio calculations (light nuclei)
- Nuclear Density Functional Theory (heavy complex nuclei)
- Microscopic reaction theory needed
- Data at the extremes of neutron-to-proton asymmetry and angular momentum needed
- Proton-neutron pairing
- Alpha clustering at the nuclear surface

Unification of nuclear structure and reactions

- Already happening in light nuclei
- Key reactions involving composite projectiles
- d + 7Li -> 8Li + p
- n + 6Li -> 4He + 3H
 (important in fusion research)
- 4He + 3He -> 7Be + γ
 (relevant for the standard solar model)

Neutron stars

- Neutron stars: more massive than the sun, 20 km across
- Tremendous gravitational forces squeeze matter in the core to supranuclear density
- Neutron star: 18 orders larger than 208Pb, 55 orders more massive than 208Pb, but same constituents, same strong interactions, same relation between pressure and density

Nuclear pasta

- Outer layers of neutron star cool rapidly (within a few years' time)
- Crust outer region: lower density, conventional atomic nuclei
- Denser regions of the crust: Platelike nuclei (lasagna) Rodlike nuclei (spaghetti) More complex shapes (nuclear pasta)

4. Nuclear Astrophysics

- Origin of the elements
- The life of stars
- The death of stars
- The matter of neutron stars

The Carbon-to-Oxygen ratio in our Universe

Important for:

- Development of the chemical building blocks of life
- Sequence of late stellar evolution phases for the massive stars that give rise to core collapse supernovae

Need:

- Reaction rates of carbon induced reactions
- Cosmic-ray-background-free environment (deep underground)

The origin of heavy elements

Origin of neutron-rich elements heavier than iron

- s-process (slow neutron capture)
- r-process (rapid neutron capture) (high temperature, high density, violent events)
- Half of the nuclei with mass>100 originate in the r-process
- Where does the r-process happen?
 Large aperture observatories (Hubble telescope, Magellan observatory)

Advanced LIGO and nuclear physics

- Detection of gravitational radiation from the violent merging of neutron stars in binary systems
- Advanced Laser Interferomenter Gravitational-Wave Observatory (LIGO)
- Nature and behavior of ultradense neutron matter
- Conditions in the merger environment

Facilities for Nuclear Structure and Astrophysics

- Argonne Tandem Linac Accelerator System (ATLAS) Lemont, Chicago, Illinois Argonne National Laboratory (ANL)
- National Superconducting Cyclotron Laboratory (NSCL) East Lansing, Michigan Michigan State University (MSU)
- Facility for Rare Isotope Beams (FRIB) 2020-2022
- 88-inch Cyclotron Berkeley Hills, Berkeley, California Lawrence Berkeley National Laboratory (LBNL)
- Association for Research at University Nuclear Accelerators (ARUNA)
 12 institutions

John D. Fox Accelerator Laboratoty, Florida State University

U.S. participation abroad – Europe

- ISOLDE, CERN radioactive beam facility Isotope separation on-line (ISOL) method Upgrade to HIE-ISOLDE (higher energy reaccelerated beams)
- SPIRAL, GANIL, Caen (France) Grand Accelerateur National d'Ions Lourds Upgrade to SPIRAL2 (reaccelerated RIBs) ISOL method
- SPES, NLN-INFN, Legnaro (Italy) under construction Selective Production of Exotic Species ISOL target
- NuSTAR, FAIR, Darmstadt (Germany) under construction FAIR: Facility for Antiproton and Ion Research Upgrade of existing in-flight program Highest energies

U.S. participation abroad

- Asia, in-flight facilities
- Rare Isotope Beam Facility (RIBF), Japan RIKEN (Institute of Physical and Chemical Research), Wako, Saitama
- RAON (=joyful, happy) Heavy Ion Accelerator, Korea Rare Isotope Science Project (RISP) Institute for Basic Science (IBS), Daejeon, Korea
- High Intensity Heavy Ion Accelerator Facility (HIAF), China Heavy Ion Research Facility (HIRF), Lanzhou Chinese Academy of Sciences (CAS)
- Canada, ISOL facility
 Isotope Separator and Accelerator (ISAC),
 TRIUMF (National Laboratory for Particle and Nuclear Physics), Vancouver
 Advanced Rare Isotope Laboratory (ARIEL) under construction

5. Fundamental Symmetries and Neutrinos

- What are the absolute masses of neutrinos, and how have they shaped the evolution of the universe?
- Are neutrinos their own antiparticles?
- Why is there more matter than antimatter in the present universe?
- What are the unseen forces that disappeared from view as the universe expanded and cooled?

The quest to observe rare nuclear decays

- Standard beta decay: e, v
- Double beta decay: e, e, v, v
- Neutrinoless double beta decay: e, e (v) $0v\beta\beta$

Consequences:

- Neutrinos are their own antiparticles (Majorana particles)
- The total number of leptons in the universe is not a conserved quantity
- Leptogenesis explanations of the mystery of matterantimatter imbalance in the universe

Matter over antimatter

- Why is there more matter than antimatter in the present universe?
- The fireball generated during the Big Bang was democratic
- Andrei Sakharov (Nobel prize): Forces in the early universe must have violated certain fundamental symmetries in ways not seen in the Standard Model
- Experimental search for permanent electric dipole moment of neutrons, protons, electrons, and atoms
- Leads to violation of time-reversal symmetry

Facilities for Fundamental Symmetries and Neutrino Physics

- Sanford Underground Research Facility (SURF) Lead, South Dakota Former Homestake gold mine
- Fundamental Neutron Physics Beamline (FnPB) Spallation Neutron Source (SNS) Oak Ridge National Lab (ORNL) Oak Ridge, Knoxville, Tennessee
- UltraCold Neutron (UCL) facility Los Alamos National Lab (LANL) Los Alamos, New Mexico
- Fermilab Muon Campus
 Fermi National Accelerator Laboratory Batavia, Chicago, Illinois

U.S. participation abroad

- KArlsruhe TRItium Neutrino (KATRIN) experiment, Germany
- Cryogenic Underground Observatory for Rare Events (CUORE), Gran Sasso, Italy
- KaMLAND-Zen experiment, Japan
- SNO+ experiment, SNOLAB, Sudbury, Canada
- Paul Scherrer Institute (PSI), Villigen, Switzerland
- TRIUMF ISAC RIB facility, Canada

6. Theoretical Nuclear Physics

- New investments in computational nuclear theory
- FRIB Theory Alliance
 Facility for Rare Isotope Beams
- Topical Collaborations

Theory of Reactions for Unstable Isotopes (TORUS)

Neutrinos and Nucleosynthesis in Hot and Dense Matter (NuN)

Jet and Electromagnetic Tomography (JET)

7. Facilities and Tools

already presented

8. Workforce, Education, and Outreach

- Undergraduate Research Experience
- National Nuclear Physics Summer School (NNPSS)
 - International Balkan School
- Nuclear Science Outreach to Students and the Public
 - Πάνος Τριγάζης
 - Δήμος Δάφνης, αποπυρηνικοποιημένη περιοχή

9. Broader Impacts – Medicine

Use of isotopes 18F in PET imaging, Clinical diagnosis of cancers 99Mo, source of 99mTc diagnostic isotope 82Rb monitors lung and heart function

- Alpha emitters for cancer therapy 223Ra metastatic prostatic cancers in bones 225Ac metastasized breast cancers
- Proton radiation therapy Pediatric cancers, brain tumors, tumors near the spine (high precision)
 Z contors in 2007, 18 contors in 2014, 17 under

7 centers in 2007, 18 centers in 2014 + 17 under construction

Broader impacts – other

- National security Cargo inspections, port security screenings Integrity of nuclear arsenal, nuclear weapons testing
- Radioisotope dating Accelerator Mass Spectrometry (AMS) 14C, 10Be, 26Al, 129I 40Ar/39Ar dating rocks and minerals
- Elemental analysis
 PIXE (particle-induced X-ray emission)
 PIGE (particle-induced gamma-ray emission)
 RBS (Rutherford Back Scattering)
 NAA (Neutron Activation Analysis)
 XRF (X-Ray Fluorescence)
 Nondestructive studies in art and archaeology

Broader impacts – other

Energy

99 reactors, 20% of electricity demand (2013)
5 new plants under construction
12 new plants under active review by the NRC (Nuclear Regulatory Commission)

Accelarator applications

Purposeful modification of materials Semiconductor industry Infuse materials with dopants

Destroying food- and water-borne pathogens

10. Budgets

- Department of Energy Office of Science
 Office of Nuclear Physics
- National Science Foundation Mathematical and Physical Sciences Directorate Physics Division
- Funding scenarios Modest growth Constant effort

1. Summary and Recommendations

Overarching science questions

- How did visible matter come into being and how does it evolve?
- How does subatomic matter organize itself and what phenomena emerge?
- Are the fundamental interactions that are basic to the structure of matter fully understood?
- How can the knowledge and technical progress provided by nuclear physics best be used to benefit society?

Recommendation I

- Completion of CEBAF 12 GeV upgade
- Completion of FRIB (Facility for Rare Isotope Beams)
- Targeted program of fundamental symmetries and neutrino research
- Upgrade RHIC facility
- Use of the two low-energy national user facilities (ATLAS and NSCL) by universities

Recommendations II, III, IV

- Development of U.S.-led ton-scale neutrinoless double beta decay experiment
- Construction of high-energy high-luminosity polarized Electron Ion Collider (EIC) following the completion of FRIB
- Increased investment in small-scale and midscale projects that enable forefront research at universities and laboratories

Initiatives

- New investments in computational nuclear theory
- Establishment of national FRIB theory alliance
- Expansion of the successful Topical Collaborations (TC) initiative to a steady-state level of five TC, selected by peer review

Workforce, education, and outreach

- Research Experiences for Undergraduates (NSF-supported)
- Advanced summer schools for graduate students and postdocs, like the National Nuclear Physics Summer School
- Creation of prestigious fellowship program designed to enhance the visibility of outstanding postdoctoral researchers

Μιλήτου άλωσις, 494 π.Χ.

- 490 π.Χ. Θεμιστοκλής, ναυπήγηση στόλου
- Άρνηση ολιγαρχικών (Ίππαρχος, Μεγακλής), συντηρητικών (Αριστείδης)
- Φρύνιχος <<Μιλήτου Άλωσις>>

...εζημίωσαν Φρύνιχον χιλίαις δραχμαίς ως αναμνήσαντα οικεία κακά...