Study of the reaction ${}^{6}Li + p \rightarrow {}^{3}He + {}^{4}He$ with DINEX telescope

Betsou Chrysoula

University of Ioannina, Physics Department Athens, 8 April 2016

Contents

- Motives for studying the reaction ${}^{6}Li + p \rightarrow {}^{3}He + {}^{4}He$
- Brief description of the experimental set-up
- Data reduction:
 - Energy calibration of ΔE and E detectors
 - Determination of solid angle Ω
 - Angular distribution at the energies of 16, 20, 25 and 29 MeV
- Interpretation of experimental results based on theoretical calculations
- Conclusions

Motives for studying the ${}^{6}Li + p \rightarrow {}^{3}He + {}^{4}He$

- The study of p(⁶Li,³He)⁴He is a complementary part of the LIPMAGNEX experiment (measurements of elastic scattering and breakup modes) and will contribute for understanding the reaction mechanism of ⁶Li + p
- This reaction is significant for astrophysical problems and for energy production both in stars and in thermonuclear reactors

Experimental set-up

The experiment was conducted in Instituto Nazionali di Fisica Nucleare -Laboratori Nazionali del Sud in Catania (INFN-LNS), Italy

Inside the reaction chamber..

The **DINEX** telescope: •set at a distance 15.5 cm from the target

• allocating from $\theta_{lab} = 16^{\circ} - 34^{\circ}$ Consists of:

$$\theta_{c.m.} = 40^{\circ} - 140^{\circ}$$

1 ΔE DSSSD Silicon detector:
 -48 μm thick

-Active area of 5 x 5 cm

-16 vertical & 16 horizontal strips

□ 2 E Silicon detectors

-530 µm thick

⁶Li beam impinged on a ~300 μg/cm² CH₂ target ³He and ⁴He were recorded by one DINEX telescope

Energy calibration of ΔE and E

- Necessary for the identification of ³He και
 ⁴He in spectrum
- Based on measurements performed with gold and carbon

E = a * channel + b

Differential cross section:

$$\frac{d\sigma(\theta)}{d\Omega} = \frac{N(\theta)}{\Phi^*\Omega^*D}$$

where: N: number of counts/time Φ: beam's flux (particles/time) Ω: solid angle(steradian) D: hydrogen's scattering centers (atoms/cm²)

units: mbarn/sr

(1 mbarn=10⁻²⁷cm²)

Solid angle Ω :

$$\Omega = \frac{N}{\Phi^* D^* \sigma_{Ruth.}}$$

Units: steradian

based on measurements performed with gold
at Elab= 25MeV (Rutherford scattering)
where:
N: number of counts/time

Φ: beam's flux (particles/time)

 σ_{Ruth} . : Rutherford cross section (mbarn/sr)

D: scattering centers of ¹⁹⁷Au (atoms/cm²)

In a two-dimension spectrum...

Angular distribution at 16 MeV

Determination of reaction cross section at 16 MeV

Fit of the $\frac{d\sigma}{d\Omega}$ to a sum of Legendre polynomials $\sum_{l=0}^{l} B_l P_l(\cos(\theta))$ with 4, 5 and 7 terms

reaction cross section

 $\sigma_r = 4\pi B_o$

Taking the mean value of cross sections from various fits:

 σ_r = (111±2) mb

Angular distribution at 20 MeV

⁴He is observed from $\theta_{c.m}=47^{\circ}$ to 103° and ³He from $\theta_{c.m}=97^{\circ}$ to 141 °

The overlapping of ³He and ⁴He at the angular range from 97° to 103° confirms the background subtraction

Determination of reaction cross section at 20 MeV

Fit of the $\frac{d\sigma}{d\Omega}$ to a sum of Legendre polynomials $\sum_{l=0}^{\infty} B_l P_l(\cos(\theta))$ with 4, 5 and 7 terms reaction cross section

$\sigma_r = 4\pi B_o$

Taking the mean value of cross sections from various fits:

Angular distribution at 25 MeV

⁴He is observed from $\theta_{c.m}=50^{\circ}$ to 100° and ³He from $\theta_{c.m}=96^{\circ}$ to 140 °

The overlapping of ³He and ⁴He at the angular range from 96° to 100° confirms the background subtraction

Determination of reaction cross section at 25 MeV

Fit of the $\frac{d\sigma}{d\Omega}_{l}$ to a sum of Legendre polynomials $\sum_{l=0}^{l} B_{l}P_{l}(\cos(\theta))$ with 4, 5 and 7 terms reaction cross section

 $\sigma_r = 4\pi B_o$

Taking the mean value of cross sections from various fits:

Angular distribution at 29 MeV

⁴He is observed from $\theta_{c.m}=51^{\circ}$ to 103° and ³He from $\theta_{c.m}=89^{\circ}$ to 138°

The overlapping of ³He and ⁴He at the angular range from 89° to 103° confirms the background subtraction

Determination of reaction cross section at 29 MeV

Reaction cross section

Total cross section of the reaction

E _{lab} (MeV)	$\sigma_r (mb)$	σ _{MECO} (mb)	σ _{CDCC} (mb)
16	111±2	114	131
20	140±8	145	162
25	131±6	114	133
29	95±2	90	110

•Compound calculations with the code MECO for the production of ⁴He and ³He by Dr. N. Nicolis \rightarrow indicates the strong presence of compound mechanism

•Coupled Reaction Channels (CRC) calculations for the ${}^{6}Li(p,{}^{3}He){}^{4}He$ with the code FRESCO carried out by Dr. N. Keeley \rightarrow small contribution from direct mechanism

Total cross section of the reaction

E _{lab} (MeV)	$\sigma_{\rm r} ({\rm mb})$	σ _{MECO} (mb)	σ _{CDCC} (mb)
16	111±2	114	131
20	140±8	145	162
25	131±6	114	133
29	95±2	90	110

•The experimental data from the elastic scattering ⁶Li + p \rightarrow ⁶Li + p were reproduced in a Continuum Discretized Coupled Channel calculation framework (CDCC) performed by Prof K. Rusek \rightarrow determination of total cross sections and breakup cross sections \rightarrow absorption cross section \rightarrow the ⁶Li + p \rightarrow ³He + ⁴He is the most prominent reaction

Conclusions

- ➤ Inter consistency of all data recorded in LIPMAGNEX experiment (elastic scattering, breakup and p(⁶Li,³He)⁴He) → validity of present data which:
 - favor Lin et al. results
 - indicate a possible new resonance centered at $E_p = 3.7 MeV$
- Strong presence of the compound mechanism and a small contribution from direct mechanisms

Acknowledgements

- Group of the Nuclear Physics Laboratory of University of loannina and the head of the group Professor A. Pakou
- LNS group of the laboratory in Catania and the head of the group Francesco Cappuzzello
- Group of the Huelva University and the head of the group Ismael Martel
- Warsaw's group with the Professors Krzysztof Rusek andNick Keeley

Thank you for your attention