Introduction	

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

ション ふゆ く 山 マ チャット しょうくしゃ

Black hole microquasars: gamma ray and neutrino emission

Fotios Anagnostopoulos Supervisor: Prof. Theocharis Kosmas

University of Ioannina, Physics Department Theoretical Division

3rd Workshop on New Aspects and Perspectives in Nuclear Physics April 8, Athens 2016

Introduction	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions
\sim ·			

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

-

verview

Introduction

- Definition and Observational Characteristics
- Aim of this work

2 Modelling Neutrino & Gamma Rays production

- General
- Gamma Rays production
- Neutrino production

O Preliminary Results

- Magnetic field simulation
- Particle Distributions
- 4 Summary & Conclusions

Introduction ●000	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions
Definition and (Observational Characteristics		
Dofinitio	n		

Microquasars are X-Ray Binary Stars with twin collimated relativistic ${\rm jets}^1$

• Companion (donor) star

A main sequence star in coupled orbit with the compact object

Accretion disk

consists of plasma flowing from donor star to the compact object

Jet

plasma outflows, perpendicular to the disk

Compact object

Black Hole or Neutron Star

¹F. Mirabel *et. al.*, 1999

 Introduction
 Modelling Neutrino & Gamma Rays production

 0●00
 0000000000

Preliminary Results

Summary & Conclusions

Definition and Observational Characteristics

An Observational view

- Jet→ Radio, IR and opt. wavelengths
- Donor star→
 optical and IR
 wavelengths
- Accretion disk \rightarrow

 γ -rays and X-rays (center), optical and IR wavelengths (away from the compact object)

Introduction	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions
Definition and C	Observational Characteristics		
Why?			

Analogy with AGN

proportional to the black hole mass

- Similar phenomenology
- Cosmological importance

Introduction ○○○●	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions
Aim of this worl	<		
Simulati	on of the neutrino & gamn	na ray emissi	on from MQs

Outline of our work²

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

²T. Smponias, T. S. Kosmas, MNRAS, 2011

Introduction	Modelling Neutrino & Gamma Rays production	Preliminar
	000000000	
C		

Results

Summary & Conclusions

Neutrino producing reactions

Main contribution to neutrino emissivity in MQs jets, is due to pp collisions³

- $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$ prompt neutrinos
- $\mu^{\pm} \rightarrow e^{\pm} + \nu_{\mu} + \nu_{e}$ delayed neutrinos

Remarks:

- The jet is considered to be of hadronic substance
- The proton-proton collision with energy threshold of: $E_{thres} = 1.22 \, GeV$
- Only a tiny portion of the bulk flow protons accelerated from the 1st order Fermi acceleration⁴ to energies up to 10⁷GeV

```
<sup>3</sup>M. M. Revnoso & G. E. Romero, Astron.& Astrophys., 2013
<sup>4</sup>F. M. Rieger et al, Astrophys. Space Sci., 2007
```

Introduction 0000	Modelling Neutrino & Gamma Rays production ○●○○○○○○○○	Preliminary Results 0000	Summary & Conclusions
General			
Assumptions			

- We speculate that we have hadronic jets consisting of protons only.
- The source from which the secondary particles (pions) are injected is isotropic and time-independent.
- One-zone approximation: The particle acceleration happens in such a way that the diffusion effects could be ignored.
- Only the synchrotron and adiabatic expansion energy loss mechanisms are considered.
- The primary particles (protons) are accelerated via 1st-order Fermi mechanism only.
- Only prompt neutrinos are considered.

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

Neutrino production

Mechanisms of Energy Loss/Gain

- The acceleration to energy E_p rate via 1st-order Fermi mechanism⁵ $t_{accel.}^{-1} \simeq \frac{ceB}{E)p}$
- The particle can escape from the volume cell, $t_{esc}^{-1}(z) \cong \frac{c}{z}$
- The jet expands adiabatically, $t_{ad}^{-1} = rac{2u_b}{3z}$
- A charged particle moving with relativistic velocity into a magnetic field emits synchrotron radiation,

$$t_{sync}^{-1} = \frac{4}{3} \left(\frac{m_e}{m_p}\right)^3 \frac{\sigma_T B^2 \gamma_p}{m_e c}$$

• There are also energy losses due to photopion production, $t_{p\gamma}^{-1}(E)$

⁵Begelman et al.,ApJ, 1990

Introduction	Modelling Neutrino & Gamma Rays production ○○●●○○○○○○	Preliminary Results 0000	Summary & Conclusions
Neutrino produ	iction		
π^{\pm} inject	ction function		

The injection function of pions produced by pp interactions is given bv⁶:

$$Q_{pion}^{(pp)}(E) = nc \int_{\frac{E}{E_{max}}}^{1} \frac{dx}{x} N_{p}\left(\frac{E}{x}\right) F_{\pi}^{(pp)}\left(x, \frac{E}{x}\right) \sigma^{inel}\left(\frac{E}{x}\right)$$

where E stands for pion energy and $x = E/E_p$, with E_p the proton energy

•
$$\sigma^{inel}(E_p) = (34.3 + 1.88L + 0.25L^2) \left(1 - \left(\frac{E_{p,thr.}}{E_p}\right)^4\right)^2$$
: cross

section for inelastic pp collisions

• $F_{\pi}^{(pp)}$: distribution function of pions per pp collisions • $N_p = \frac{K_0}{E_{\lambda}^{\lambda}}$: injection rate of fast protons, $\lambda = 2$

⁶M. M. Reynoso & G. E. Romero, A& A, 2013,

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Introduction	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions
Neutrino produ	ction		
Dian Di	stribution		

Introduction	Modelling Neutrino & Gamma Rays production	Preliminary Results 0000	Summary & Conclusions
Neutrino produc	ction		
Function	as and Parameters		

The fitting parameters⁷ B_{π} , r, a, L, α written for our convenience:

$$L = ln \frac{E_{p}}{1000 \, GeV}$$

$$a = 3.67 + 0.83L + 0.075L^{2}$$

$$r = 2.6/a^{0.5}$$

$$B_{\pi} = a + 0.25$$

$$\alpha = 0.98/a^{0.5}$$

• n : density of cold particles at the volume of concern

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

⁷Kelner et al., PRD, 2006

۲

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

Neutrino production

Parameters of the fast protons injection

$$K_0 = \frac{4q_{rel}L_k}{cR_0^2 \ln\left(\frac{E_p^{\prime max}}{E_p^{\prime min}}\right)}$$

- q_{rel} : fraction of the total bulk energy carried by non-thermal protons. From HEGRA limits we adopt $q_{rel}^{max} \cong 2.9 \times 10^{-4}$
- L_k : kinetic luminosity of the jet (energy flow from a surface co-moving with the jet) $L_k \sim 10^{39}$ erg/sec
- R_0 : initial radius of the jet cros-section i.e $R_0 \simeq 5R_{Sch}$

Radio image of supernova remnant W50 in green, with infrared background in red, NRAO/AUI/NSF

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

Neutrino production

Parameters for PLUTO's jet simulation

Parameter		Comments
cell size ($\times 10^{10}$ cm)	0.25	PLUTO's computational cell
$\rho_{\rm jet}~({\rm cm}^{-3})$	1.0×10^{11}	initial jet matter density
$\rho_{\rm sw} ({\rm cm}^{-3})$	1.0×10^{12}	stellar wind density
$\rho_{\rm adw} (\rm cm^{-3})$	1.0×10^{12}	accretion disk wind density
t_{run}^{max} (s)	1.5×10^{3}	model execution time
Interpolation Method	Linear	
Integrator	MUSCL-Hancock	
EOS	Ideal	Equation of state
BinSep (cm)	4.0×10^{12}	Binary star separation
M_{BH}/M_{sun}	3-10	Mass range of collapsed star
M_{star}/M_{sun}	10-30	Mass range of Main Seq. star
$\beta = v_0/c$	0.26	Initial jet speed
L_k^p	2×10^{36}	Jet kinetic luminocity
grid resolution	$120 \times 200 \times 120$	PLUTO grid resolution (xyz)

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

Neutrino production

Parameters for the calculation in a PLUTO's cell

Parameters	Values	Comments
z(cm)	1011	Cell's characteristic dimension
$oldsymbol{M}_{BH}ig oldsymbol{M}_{solar}ig)$	10	Compact Object Mass
n(1/cm)³	1010	Cold protons numerical density
Ep ^{max} (GeV)	107	Maximum energy of a fast proton
Ep ^{min} (GeV)	1.22	Threshold energy for p-p interaction
E _n ^{max} (GeV)	107	Maximum energy of a pion produced from a fast proton
E ^{nmin} (MeV)	139.5	Pion energy at rest
B(G)	400	Characteristic value of the magnetic field in the jet

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

Neutrino production

Steady state Pion Distribution

The time-independent pion distribution is derived from the transport equation $\frac{\partial N(E,z)}{\partial E}b(E,Z) + t_{\pi}^{-1}(z)N(E,z) = Q(E,z)$

$$N_{\pi}(E,z) = rac{1}{\mid b_{\pi}(E) \mid} \int_{E}^{E^{max}} dE' Q(E',z) e^{- au_{\pi}(E,E')}$$

with

$$\tau_{\pi}(E',E) = \int_{E'}^{E} \frac{dE''t_{\pi}^{-1}(E'',z)}{\mid b_{\pi}(E'') \mid}$$

- $b_{\pi}(E) = -E(t_{syn}^{-1} + t_{ad}^{-1} + t_{\pi p}^{-1} + t_{\pi \gamma}^{-1})$ where t^{-1}
- t_π⁻¹(E, z) = t_{esc}⁻¹(z) + t_{dec}⁻¹(E):is the total rate of a pion extinction from the unit volume (sum of pion decay rate and escape rate)

Introduction 0000	Modelling Neutrino & Gamma Rays production ○○○○○○○○●	Preliminary Results	Summary & Conclusions			
Neutrino production						
Neutrin	o emission					

The total emissivity of neutrinos is⁸

$$Q_{
u}(E,z) = Q_{\pi
ightarrow
u}(E,z) + Q_{\mu
ightarrow
u}(E,z)$$

where:

$$Q_{\pi \to \nu}(E, z) = \int_{E}^{E_{max}} dE_{\pi} t_{\pi, dec}^{-1}(E) N_{\pi}(E_{\pi}, z) \times \frac{\Theta(1 - r_{\pi} - x)}{E_{\pi}(1 - r_{\pi})}$$

E:now is neutrino energy! and $r_{\pi} = \left(\frac{m_{\mu}}{m_{\pi}}
ight)^2$

- ${\, \bullet \, }$ We neglect the contribution of $\mu^{\pm} \ {\rm decay^9}$
- The z dependence is not present, as we calculate the aforementioned quantities into a PLUTO cell

```
<sup>8</sup>Lipari et al., PRD, 2007
```

```
9T. Smponias, O. T. Kosmas, Advan. High Energy Phys., 2015 🕢 🗈 🖌 🖅 🖉 🖉 🖓 ୯. ୯ 🗐 🕨 🖉 🖉 😗
```

IntroductionModelling Neutrino & Gamma Rays production00000000000000

Preliminary Results ●○○○ Summary & Conclusions

Magnetic field simulation

Mass Density for some MF values at the base of the jet

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 Introduction
 Modelling Neutrino & Gamma Rays production

 0000
 0000000000

Preliminary Results

Summary & Conclusions

Magnetic field simulation

MF Magnitude for some MF values at the base of the jet

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Introduction	Modelling Neutrino	&	Gamma	Rays	production

Preliminary Results

Summary & Conclusions

Particle Distributions

Pion Injection Function

 IntroductionModelling Neutrino & Gamma Rays production00000000000000

Preliminary Results ○○○● Summary & Conclusions

Particle Distributions

Steady State Pion Distribution

for
$$L_k = 10^{39} erg/s$$
 and $q_{rel} = 2.9 \times 10^{-4}$

Introduction	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions

Conclusions

- The neutrino emission modeling is a useful tool for exploring the physical conditions in MQ jets (i.e shock waves propagation)
- The employed methods can also be used for the gamma rays emission of the jets.
- There is a strong dependence of the jets collimation and neutrino emission on the magnetic field.
- The numerical tool that created could be used in future work to obtain more realistic results.

ション ふゆ く 山 マ チャット しょうくしゃ

Introduction	Modelling Neutrino & Gamma Rays production

Preliminary Results

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Future work

- Efficient calculation of neutrino emissivity (in progress)
- Extension of the adopted model to include more neutrino producing reactions
- Consideration of extra leptonic content in the jet

Introduction 0000	Modelling Neutrino & Gamma Rays production	Preliminary Results	Summary & Conclusions

Our team

Prof. Theoxaris Kosmas Dr Smponias Theodoros Paspaliaris Evagelos Kazatzidis Lavrentis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modelling Neutrino & Gamma Rays production

Preliminary Results

Summary & Conclusions

THE END

Medialab