Multi-Strangeness Production in Hadron Induced Reactions

T. Gaitanos, Ch. Moustakidis, G.A. Lalazissis

T. Gaitanos, Ch. Moustakidis, G.A. Lalazissis, H. Lenske, arXiv:1602.08905, Nucl.Phys. (2016), in press

Outline...

Introduction
Theoretical aspects
GiBUU+SMM hybrid transport model,
Mean-field, YN interaction models & parametrizations
<u> </u>
double-strangeness ($\Lambda\Lambda$, Ξ) hypernuclei & the YN-interaction
remarks on multi-strangeness (Ω) hypernuclei
Final remarks
말했다. 사가 사람이 가지 못했다. 사가 사람이 가지 않는 것 같아. 사가 사람이 가지 않는 것 같아. 사가 사람이 가지 않는 것 같아. 사람이 있는 것 같아. 사람이 못 갑니는 사가 사람이 한

Crucial to understand the strangeness sector of the hadronic EoS
Indirect implications for nuclear astrophysics (max. mass of NS)

Multi-strange bound systems at

1. target: pp-> $\overline{\Lambda}\Lambda$, $\overline{\Xi}\Xi$, $\overline{\Omega}\Omega$, K $\overline{K}\pi$ (annih.) πB -> ΛK , BKK (s=0) KB-> K Ξ (s=-1)

X-Sections mostly known for S=-1 Unknown for higher sectors (S=-2,-3)

Multi-strange bound systems at Panda

1. target: pp-> $\overline{\Lambda}\Lambda$, $\overline{\Xi}\Xi$, $\overline{\Omega}\Omega$, K $\overline{K}\pi$ (annih.) πB -> ΛK , BK \overline{K} (s=0) $\overline{K}B$ -> K Ξ (s=-1)

X-Sections mostly known for S=-1

Less known for higher sectors (S=-2,-3)

<u>low-energy</u> <u>∃-beams</u> 2. target: ∃B->∃B, AA (s=-2)

Multi-strange bound systems at

1. target: pp-> $\overline{\Lambda}\Lambda$, $\overline{\Xi}\Xi$, $\overline{\Omega}\Omega$, KK π (annih.) π B-> Λ K, BKK (s=0) KB-> K Ξ (s=-1)

X-Sections mostly known for S=-1 Less known for higher sectors (S=-2,-3) <u>low-energy</u> <mark>Ξ-beams</mark> 2. target: ΞΒ->ΞΒ, ΛΛ (s=-2)

<u>high-energy</u> <u>Ξ</u>-beams</u> 2. target: ΞB-><mark>Ω</mark>BK (s=-3)

Theoretical framework...

Non-Equilibrium dynamics: relativistic transport equation

$$\left[p^{*\mu}\partial^x_\mu + \left(p^*_\nu F^{\mu\nu} + m^*\partial^\mu_x m^*\right)\partial^{p^*}_\mu\right]f(x, p^*) = \mathcal{I}_{coll}$$

GiBUU: O. Buss, T. Gaitanos, et al., Phys. Reports 512 (2012) 1-124

 \Rightarrow single-particle phase-space; p,n,mesons (π ,K,...), hyperons (Λ , Σ , Ξ , Ω)

Asymptotic equilibrated stage

Statistical Multifragmentation Model (SMM)

Botvina & Mishustin, Bondorf Nucl. Phys. A475 (1987) 663; Phys. Rept. 257 (1995) 133

Fragments from evaporation/fission/multifragm./de-excitation

<u>Hypernuclei</u>

Momentum-coalescence: bound hyperons (inside residual target) & SMM-fragments

(SMM+H: Botvina & Pochodzalla, PR <u>C76</u> ('07) 024909, PL <u>B697</u> ('11) 222)

Physics input...

Equation of State (EoS): Relativistic Mean-Field (RMF)

► Non-linear Walecka model (soft EoS) → Lalazissis, et al., PL B<u>671</u> ('09) 36. Larionov, PR <u>C80</u> Carionov, PR <u>C80</u> ('09) 021601(R)

 $rac{}{} \rightarrow$ better description of \overline{p} -nucleus (but not for p-nucleus opt. Potential)

<u>Momentum-Dependent (MD) Relativistic Mean-Field model:</u> Non-Linear Derivative (NLD) approach \rightarrow MD-regulators in RMF-interactions NLD describes simultaneously p-nucleus & p-nucleus U_{opt} using G-parity only! T.G. & M. Kaskulov, Nucl. Phys. A899 (2013) 133-169 T.G. & M. Kaskulov, Nucl.Phys. A940 (2015) 181-193

Collision term: all standard a	hannels, NN → NR, NP	→ NYK, mN→	YK, etc,
rprimary: BB → mesons	Golubeva, Pshenichnov, NP <u>A537</u> ('92) 393	$\rightarrow \Lambda \overline{\Lambda}, \Xi \overline{\Xi}, \Omega \overline{\Omega}$	(data,models)
►Secondary: KB→=K (data),	ΛB↔ΣB (data,Nijmegen)		
$\Xi B { ightarrow} \Xi B, \Lambda \Lambda$	(Nijmegen,Fujiwara)		

Physics input...

Equation of State (EoS): Relativistic Mean-Field (RMF)

► Non-linear Walecka model (soft Eo S) → Lalazissis, et al., PL B<u>671</u> ('09) 36. Larionov, PR <u>C80</u> Larionov, PR <u>C80</u> ('09) 021601(R) ► → better description of **p**-nucleus (but not for **p**-nucleus opt. Potential)

<u>Better: Momentum-Dependent (MD) Relativistic Mean-Field model:</u>

Non-Linear Derivative (NLD) approach \rightarrow MD-regulators in RMF-interactions NLD describes simultaneously p-nucleus & p-nucleus U_{opt} using G-parity only! T.G. & M. Kaskulov, Nucl. Phys. A899 (2013) 133-169 T.G. & M. Kaskulov, Nucl.Phys. A940 (2015) 181-193

Collision term:all standard channels, NN \rightarrow NR, NN \rightarrow NYK, mN YK, etc.primary:BB \rightarrow mesonsGolubeva, Pshenichnov,
NP <u>A537</u> ('92) 393 $\rightarrow \Lambda \overline{\Lambda}, \Xi \overline{\Xi}, \Omega \overline{\Omega}$ (data, models)Secondary:KB $\rightarrow \Xi K$ (data), $\Lambda B \leftrightarrow \Sigma B$ (data, Nijmegen) $\Xi B \rightarrow \Xi B, \Lambda \Lambda$ (Nijmegen, Fujiwara)

Physics input...

Equation of State (EoS): Relativistic Mean-Field (RMF)

► Non-linear Walecka model (soft Eo S) → Lalazissis, et al., PL B<u>671</u> ('09) 36. Larionov, PR <u>C80</u> Larionov, PR <u>C80</u> ('09) 021601(R) ► → better description of **p**-nucleus (but not for **p**-nucleus opt. Potential)

Better: Momentum-Dependent (MD) Relativistic Mean-Field model:

Non-Linear Derivative (NLD) approach \rightarrow MD-regulators in RMF-interactions NLD describes simultaneously p-nucleus & p-nucleus U_{opt} using G-parity only! T.G. & M. Kaskulov, Nucl. Phys. A899 (2013) 133-169 T.G. & M. Kaskulov, Nucl.Phys. A940 (2015) 181-193

Collision term:all standard channels (elastic, inelastic, resonance production, etc.)primary: $B\overline{B} \rightarrow mesons$ $B\overline{B} \rightarrow \Lambda\overline{\Lambda}, \Xi\overline{\Xi}, \Omega\overline{\Omega}$ (data,models)Secondary: $\overline{K}B \rightarrow \Xi K$ (data), $\Lambda B \leftrightarrow \Sigma B$ (data,Nijmegen) $\Xi B \rightarrow \Xi B, \Lambda\Lambda$ (Nijmegen, Fujiwara) $mB, B\overline{B} \rightarrow \Omega\overline{\Omega}, \Omega + X$ (PYTHIA)

Elementary primary channels: pp-> X...

Statistical annihilation model (pp-> mesons) up to 6-particles final states ($\pi,\eta,\omega,\rho,K,\overline{K},K^*,\overline{K}^*$)

Elementary primary channels: pp-> X...

Elementary secondary channels (S=-1)

<u>Hyperon-Nucleon rescattering</u> ($\Sigma N \ll \Lambda N$)

<u>Antikaon-Nucleon rescattering</u> $(\overline{K}N \rightarrow \Xi K)$ similar situation

Gaitanos, Larionov, Lenske, Mosel, Nucl.Phys. <u>A914</u> ('13) 405

Elementary secondary channels (S=-2)

Gaitanos, H. Lenske, Phys. Lett. B737 (2014) 256

Elementary secondary channels (S=-3)

<u>Hyperon-Nucleon rescattering (Ω -production)</u>

Gaitanos, H. Lenske, Phys. Lett. B737 (2014) 256

Gaitanos, Moustakidis, Lalazissis, Lenske, arXiv:1602.08905, Nucl. Phys. A (2016) in press

Athens, 08.04.16

- Results for Fanda
- 1) fragmentation dynamics
- 2) strangeness dynamics
- → multi-strangeness hypernuclei

- 1) fragmentation dynamics
- 2) strangeness dynamics
- → multi-strangeness hypernuclei

Larionov, Gaitanos, Mosel, Phys. Rev. <u>**C85**</u> (2012) 024614 Gaitanos, Larionov, Lenske, Mosel, Nucl. Phys. <u>**A881**</u> (2012) 240 Larionov, Gaitanos, Lenske, Mosel, EPJ Web Conf. <u>37</u> (2012) 06007 Larionov, Gaitanos, Mosel, Hyperfine Interactions <u>213</u> (2012) 81

Strangeness dynamics: S=-1 hyperons & mesons (K)

Strangeness dynamics: S=-2 hyperons (Ξ)

Athens, 08.04.16

Multi-strangeness hypernuclei at primary p-beam on 1. target

Gaitanos, Larionov, Lenske, Mosel, Nucl. Phys. <u>A881</u> (2012) 240

Athens, 08.04.16

<u>Multi-strangeness Hyp. in 1. target...</u>

 $\mathbf{K} \boldsymbol{\tau}$ Ξ p... momentum coalescence between SMM-clusters & captured Λ 10^{3} \overline{p} + ⁶⁴Cu@5 GeV 10^2 fragments 10 (qm) Zp/Np ... charge distributions Λ -fragments 10^{0} 10^{-1} ΛΛ-fragments 10^{-2} 10⁻³ 5 10 15 20 25 30 0 charge Z

Production of single- Λ hypernuclei possible Production of double- Λ hypernuclei via Ξ -capture in 2nd target...

Multi-strangeness hypernuclei at primary p-beam on 1. target + secondary Ξ-beam on 2. target

 $\Omega\Omega$

KKπ

Ξ

Ω

<u>Dynamics in 2. target</u>...

Gaitanos, Larionov, Lenske, Mosel, Nucl.Phys. <u>A914</u> ('13) 405 Gaitanos, H. Lenske, Phys. Lett. **<u>B737</u>** (2014) 256

Role of <u>EN-interaction?</u>...

 Ξ + Cu @ low energies

Gaitanos, H. Lenske, Phys. Lett. B737 (2014) 256

→ Dynamics strongly model dependent

 $\rightarrow \Xi$ -bound systems possible, again strongly model dependent

 $\rightarrow \Lambda\Lambda$ - and Ξ hypernuclear yields important observables to better constraint the still unknown ENinteraction

Gaitanos, Moustakidis, Lalazissis, Lenske, arXiv:1602.08905, Nucl. Phys. A (2016) in press

Athens, 08.04.16

Final remarks...

🖛 <u>"FAIR"-Physics @ Thessaloniki & Giessen</u>

 \rightarrow GiBUU+SMM: NE-dynamics + statistical model of fragmentation \rightarrow suitable tool for PANDA-reactions

- \rightarrow formation of multi-strange hypermatter at PANDA possible
- → strong dependence on underlying YN-models!
- \rightarrow good observables to constraint more the still unknown S=-2 YN-sector

First predictions on S=-3 Ω -production

 \rightarrow production of $\Omega\text{-particles}$ only in secondary beams abundantly

 \rightarrow high Ξ -beam momenta are necessary

<u>To do/in progress....</u>

 \rightarrow <u>YN & YY</u>: full in-medium (selfenergies), S=-2 - sector ($\overline{K}A \rightarrow \Xi B$, $\Xi B \rightarrow AA$)

Combined GiBUU+SMM model ...

- * Non-Equilibrium dynamics within GiBUU; determine source(s) (Source: residual nuclei in hadron-induced reactions)
- * GiBUU: Determine A, Z, excitation energy E_{exc} and local pressure p of the source versus time
- * Temporal GiBUU evolution until source approaches stable configuration, e.g., local equilibrium, at freeze-out time $t=t_f$
- * Apply for each GiBUU event the SMM code with A,Z and $\rm E_{_{exc}}$ as input from GiBUU

Fragmentation of residual nuclei...

Fragmentation of residual nuclei...

T.G., Larionov, Lenske, Mosel, Nucl.Phys. <u>A881</u> ('12) 240

