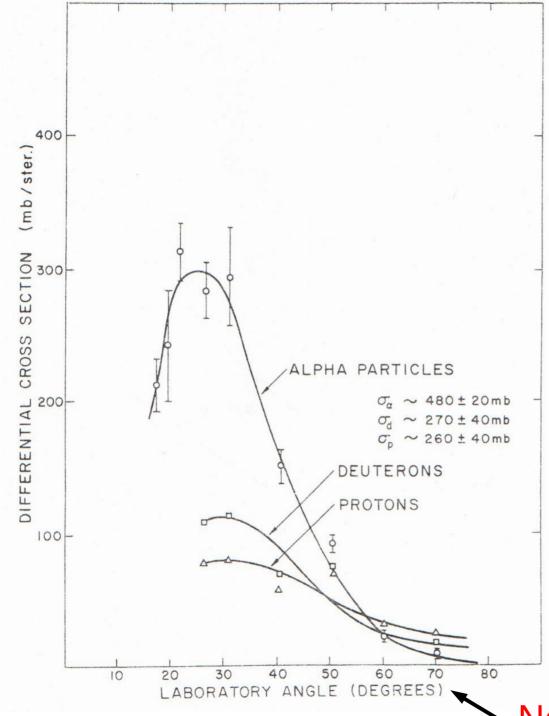
Light charged particle production in reactions induced by weakly-bound projectiles: Still an open question.

N. Keeley

National Centre for Nuclear Research, Warsaw, Poland

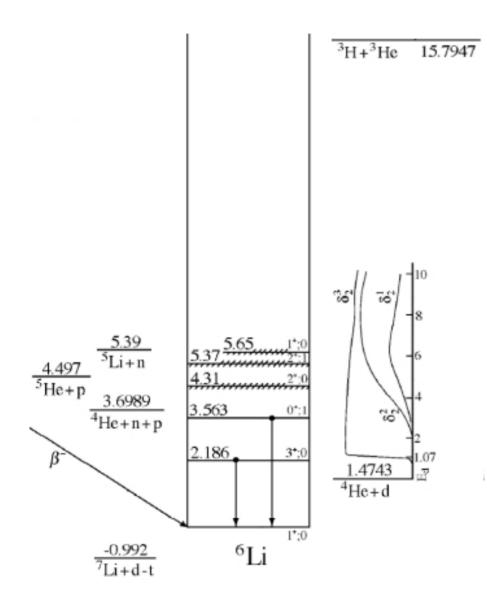


Reactions induced by light weakly-bound nuclei produce large numbers of light charged particles (d, t, α , etc.) with atomic number less than that of the projectile.

This phenomenon was first observed almost sixty years ago—cf. C. E. Anderson, *Proc. 2nd Conf. on reactions between complex nuclei*, Gatlinburg, 1960, ed. A. Zucker, E. C. Halbert and F. J. Howard (Wiley, N.Y., 1960)—and is still an active topic of research today, e.g. J. Lei and A. M. Moro, Phys. Rev. C **95**, 044605 (2017). Why this continuing interest? Surely "every one knows" that these particles come from breakup of the weakly-bound projectile?

However, the production mechanism must be more complex than this since, at least for nuclei with alpha-clustering structures, many more α particles are observed than d, t ³He etc.

This observation dates back to the initial (inclusive) measurements of Andersen ...

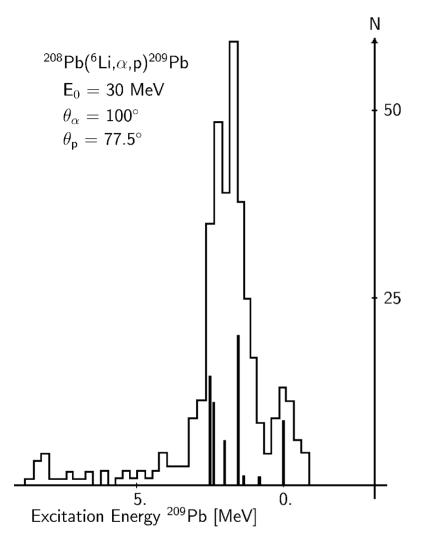

Data are for 60.6 MeV ⁶Li incident on gold.

 $\sigma_{\alpha} \approx 2 \times \sigma_{d}$ but: $\sigma_{\alpha} \approx \sigma_{d} + \sigma_{p}$

First thought was that α particles came from ${}^{6}Li \rightarrow \alpha + d$ breakup and that some of the deuterons then broke up in their turn.

Note: laboratory angle

However, while this explanation is plausible it is untenable. Examine the level scheme for

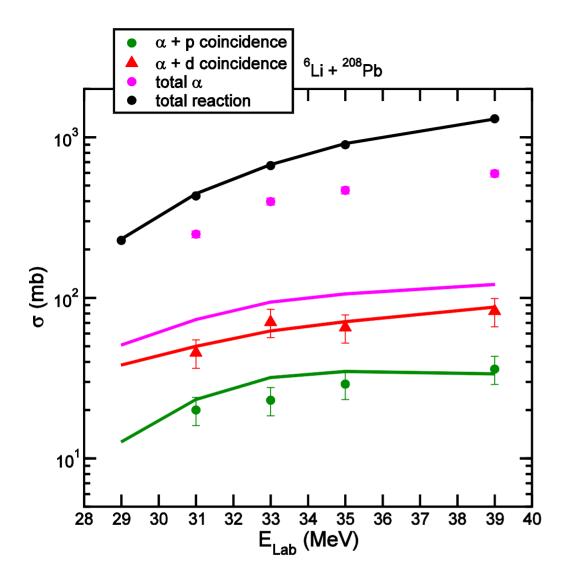


⁶Li. Threshold for direct 3-body breakup (⁶Li → α + n + p) is 3.7 MeV, above 2.19 MeV 3⁺ resonance. Lifetime of this resonance is 2.7×10⁻²⁰ s, so on average it can only decay into α + d at distances too far away for breakup of d.

Why is the 3⁺ resonance important? We can also have "direct" breakup to the α + d continuum \rightarrow shorter "life time".

Exclusive measurements by Ost *et al.*, Z. Phys. **266** (1974) 369 for ${}^{6}Li + {}^{208}Pb$ system found α + d coincidences enhanced for sequential breakup via ${}^{6}Li$ 3⁺.

They also saw α + p and α + α coincidences. Evidence for ²⁰⁸Pb(⁶Li,⁵Li)²⁰⁹Pb and ²⁰⁸Pb(⁶Li,⁸Be)²⁰⁶Tl stripping and pickup ...



Projection of α + p coincidences shows that they indeed come from the 1n stripping reaction, mostly via g.s. of ⁵Li.

Conclusion was that the 1n stripping and d pickup reactions could account for the observed excess of α particles over d.

Qualitatively satisfying, but does this explanation hold up *quantitatively*?

Signorini *et al.*, Phys. Rev. C **67** (2003) 044607: ⁶Li + ²⁰⁸Pb inclusive *and* exclusive measurements ...

Firstly, note that data bear out quantitatively conclusions of Ost *et al.*, breakup makes small contribution to total α cross section.

Calculations compared with data of Signorini *et al.*, CDCC for breakup plus standard CRC for 1n stripping.

Description is good, but we are still a long way from describing the total α cross section (cf. magenta points with curve) but have shown α + p coincidences consistent with stripping mechanism. Quantitative estimate of ²⁰⁸Pb(⁶Li,⁸Be)²⁰⁶Tl not possible, too many unknowns: exit channel OMP, spectroscopic factors for <²⁰⁸Pb|²⁰⁶Tl + d> overlaps, which states in ²⁰⁶Tl populated?

However, "kinematics" is at least consistent with observation of $\alpha + \alpha$ coincidences: Q value of d pickup is +9.65 MeV, estimate of optimum Q is +12.0 MeV, roughly calculated assuming:

$$Q_{\rm opt} = \left[\frac{Z_{\rm b}Z_{\rm B}}{Z_{\rm a}Z_{\rm A}} - 1\right] E_{\rm cm}$$

favours population of low-lying states of ²⁰⁶TI

We thus see that the predominance of α particles over d for ⁶Li incident on heavy targets can, at least qualitatively (and to some extent quantitatively) be explained if the majority of α particles are produced by transfer reactions rather than breakup.

Pursuing this hypothesis, let us compare the various transfer reactions that could lead to α particles or d:

```
(^{6}\text{Li}, {}^{5}\text{Li}) \rightarrow {}^{4}\text{He} + p

(^{6}\text{Li}, {}^{5}\text{He}) \rightarrow {}^{4}\text{He} + n

(^{6}\text{Li}, {}^{8}\text{Be}) \rightarrow {}^{4}\text{He} + {}^{4}\text{He}

(^{6}\text{Li}, {}^{7}\text{Li}^{*}) \rightarrow {}^{4}\text{He} + {}^{3}\text{H}
```

$$(^{6}\text{Li}, {}^{6}\text{Be}) \rightarrow {}^{4}\text{He} + p + p$$

 $(^{6}\text{Li}, {}^{6}\text{He}^{*}) \rightarrow {}^{4}\text{He} + n + n$
 $(^{6}\text{Li}, {}^{4}\text{He})$ (i.e. deuteron stripping)
 $(^{6}\text{Li}, {}^{7}\text{Be}^{*}) \rightarrow {}^{4}\text{He} + {}^{3}\text{He}$

Admittedly, many of these are unlikely to occur with any probability

By contrast, the only transfer process that I can think of that could produce deuterons is the ($^{6}Li,d$) α stripping

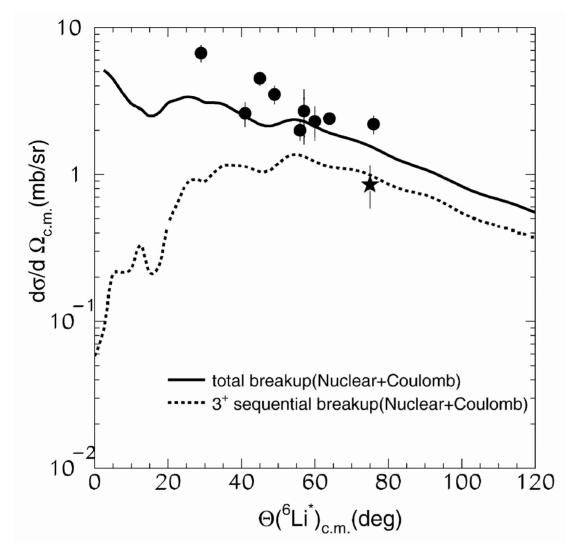
Of course, the relative importance of these reactions will depend very much on the target: *Q* and *L* matching will be critical to giving a significant cross section (as of course will the availability of suitable target-like states with large spectroscopic factors).

The relative contribution of breakup will also depend to some extent on the target (higher Z implies more Coulomb breakup, thus a bigger breakup cross section).

Finally, for lighter targets there is the possibility of fusionevaporation of α particles and deuterons, added complication Further support for the transfer hypothesis comes from the fact that for ⁷Li we also see many more α particles than tritons in inclusive measurements; breakup of the t after ⁷Li $\rightarrow \alpha$ + t breakup is unlikely.

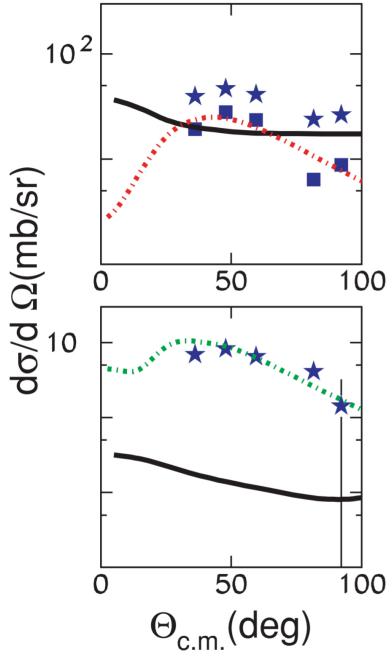
E.g.: J. L. Québert *et al.*, Phys. Rev. Lett. **32**, 1136 (1974) singles yields as follows (7 Li + 197 Au):

σ _{tot} (mb)	Particle	
11±3	Þ	
9 ± 2	d	
19 ± 3	t	
220 ± 10	α	
9 ± 3	⁶ He	


Also see significant α + d coincidences from (⁷Li,⁶Li*)

What further experimental support is there for the importance of transfer process in α particle production for ⁶Li and ⁷Li induced reactions?

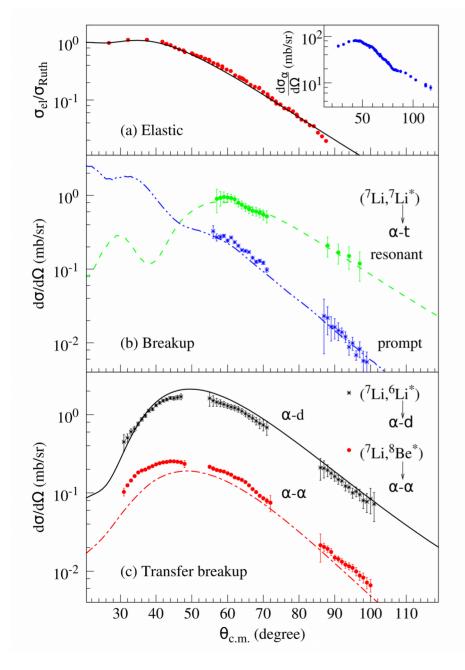
Extensive study of ⁶Li + ²⁸Si system:


A. Pakou *et al.*, Phys. Rev. Lett. **90**, 202701 (2003),
A. Pakou *et al.*, J. Phys. G **31**, S1723 (2005),
A. Pakou *et al.*, Phys. Lett. B **633**, 691 (2006),
A. Pakou *et al.*, Phys. Rev. C **76**, 054601 (2007).

Exclusive (coincidence) data show importance of transfer processes ...

13 MeV ⁶Li + ²⁸Si

 α + d coincidences (breakup) well described by CDCC Note importance of sequential breakup via 3⁺



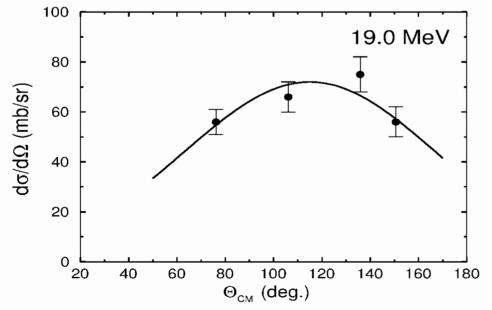
13 MeV ⁶Li + ²⁸Si α - γ coincidences Upper: ²⁹Si + α + p Lower: ²⁹P + α + n

For this light target there can be significant contributions from compound nucleus processes, shown on plots as solid lines.

> Stars are "raw" data, squares are "direct" data (compound subtracted) Dot-dashed curves are DWBA for 1n and 1p stripping respectively (x3.5 and x2.2 to match data).

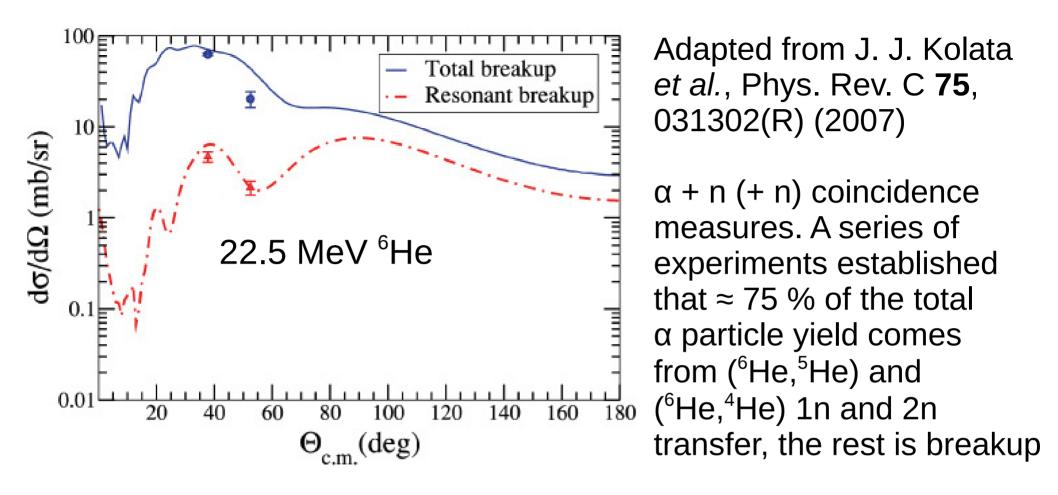
Similar study also performed for the ⁷Li + ²⁸Si system.

A recent study of the ⁷Li + ⁹³Nb system, S. K. Pandit *et al.*, Phys. Rev. C **93**, 061602(R) (2016) also provides quantitative confirmation of conclusions of Québert *et al.*


Plots at left are for incident ⁷Li energy of 28 MeV.

We will now look at some selected weakly-bound radioactive beams Probably the most studied of these nuclei is ⁶He (most intense beam)

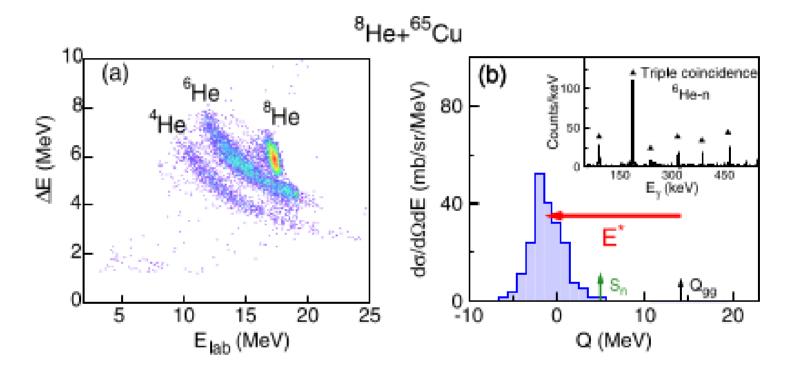
Most complete data set for the ⁶He + ²⁰⁹Bi system, measured at the TwinSol system of the University of Notre Dame


Measured inclusive α yield at several near-barrier energies and later on α -neutron coincidences.

Very large α yield, much larger than measured fusion cross section. Angular distributions suggested direct process(es):

E. F. Aguilera *et al.*, Phys. Rev. Lett. **84**, 5058 (2000).

Cross section holds up at energies well below the Coulomb barrier, implies that it is not dominated by breakup ...


Channel	$\sigma_{\rm c.m.}$ (mb)	σ_{α} (mb)	σ (Refs. [1,2]) (mb)
Fusion	310 ± 45		
1 <i>n</i> transfer	155 ± 25		
2 <i>n</i> transfer	410 ± 122	770 ± 140	773 ± 31
Breakup	205 ± 65		
$\sigma_{ m reac}$	1080 ± 148		1170 ± 150

It is something of a paradox that the total α particle production cross section is understood for the radioactive beam ⁶He but still not completely so for the stable ⁶Li and ⁷Li (although we do have plenty of clues).

The situation for ⁸He is somewhat similar, but a little more complicated. Not only are the available beam intensities two orders of magnitude lower than for ⁶He but we have substantial ⁶He as well as ⁴He production.

Nevertheless, particle-y coincidences have been measured and we can make some inferences ...

Experiments were possible at GANIL-SPIRAL where ⁶He y – n coincidences were measured in an experiment with a ⁶⁵Cu target: A. Lemasson *et al.*, Phys. Lett. B **697** (2011) 454.

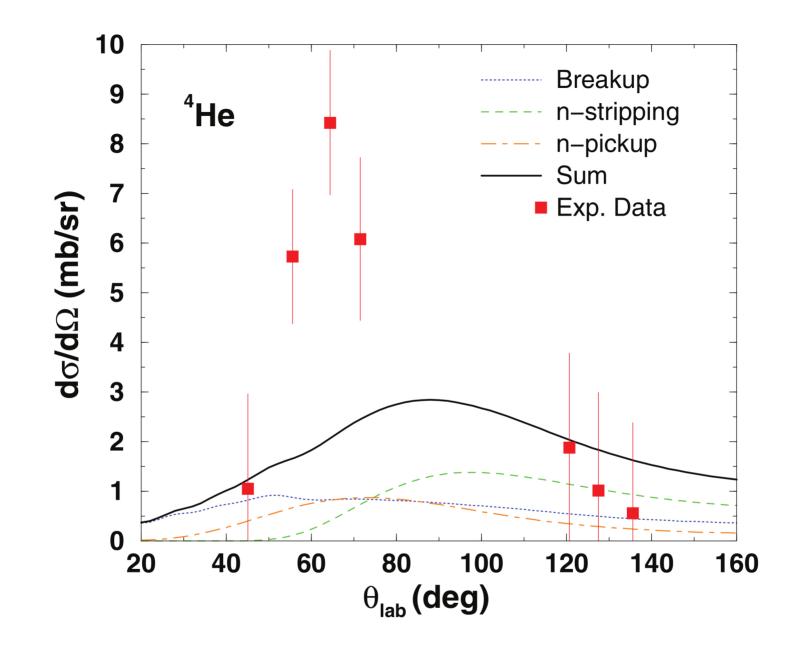
⁴He mostly from fusion-evaporation. *Q*-distribution in (b) is from ⁶He-γ coincidences: consistent with *Q*-matching conditions for transfers. Don't see any ⁶⁷Cu from 2n stripping since it would populate states that decay by single neutron emission ... From measurements of the in-beam characteristic γ rays of the residues the total 1n + 2n transfer cross section can be estimated, after correction for fusion-evaporation contributions.

Resulting cross sections are: 782 ± 78 mb at 19.9 MeV and 759 ± 114 mb at 30.6 MeV

Individual cross sections for 1n and 2n could not be obtained since the beam intensity was too low to enable the required triple coincidences, plus decay of unbound excited states of ⁶He to ⁴He further complicates things.

However, these are large cross sections: corrections from fusion-evaporation amounted to 13% and 21% at 19.9 and 30.6 MeV respectively. Transfer even more important for 8 He than for 6 He.

How do things stand with other weakly-bound radioactive beams?


⁷Be similar to ⁶Li and ⁷Li: more α than ³He but we still cannot be absolutely sure of all the production mechanisms:

M. Mazzocco *et al.*, Phys. Rev. C **92**, 024615 (2015), 22 MeV ⁷Be + ⁵⁸Ni: ⁴He mainly from fusion evaporation in this system, ³He production seems to be dominated by ⁴He stripping.

³He can only be formed by ⁷Be \rightarrow ⁴He + ³He breakup or ⁵⁸Ni(⁷Be, ³He)⁶²Zn

⁴He production more complicated: ⁷Be \rightarrow ⁴He + ³He breakup, ⁵⁸Ni(⁷Be,⁸Be)⁵⁷Ni 1n pickup, ⁵⁸Ni(⁷Be,⁶Be)⁵⁹Ni 1n stripping, ⁵⁸Ni(⁷Be,⁴He)⁶¹Zn ³He stripping and fusion-evaporation.

Fusion-evaporation most important, the direct processes seem to contribute about equally ...

Data have (calculated) fusion-evaporation component already subtracted.

Other weakly-bound radioactive beams may be different.

Breakup may be dominant source of light charged particles in systems involving ¹¹Be and ¹¹Li beams, for example.

For ⁸B and ¹⁷F it is fairly certain that the inclusive ⁷Be and ¹⁶O cross sections are dominated by breakup.

For ¹⁵C the honours may be equal for the ¹⁴C production

Of course, to some extent the exact trade-off between breakup and transfer will depend on the target and the incident energy. There are still unanswered questions in this field:

Is ⁴He (and d, t or ³He) stripping really important for light particle production in reaction induced by ⁶Li, ⁷Li and ⁷Be? Or is the mechanism something else like "incomplete fusion" or "capture breakup"? All have problems, and is it even meaningful to talk about different mechanisms here?

It is something of a paradox that the weakly-bound radioactive nuclei are easier to understand in this context, since the number of different mechanisms involved is much less than for ⁶Li and ⁷Li

e.g. ¹⁴C production in reaction induced by ¹⁵C – only need consider ¹⁵C \rightarrow ¹⁴C + n breakup and (¹⁵C,¹⁴C) stripping

More exclusive (coincidence) data needed to help unravel these problems

Dziękuję za uwagę!