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Properties of Neutron Stars

Radius: R~10-15 km

Mass: M~1.4-2.5 Msolar

Mean density: p(r)~4x10714 g/cm3
Frequency: few Hz— 700 Hz
Magnetic field: B~100-1000 G
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The knowledge of maximum neutron star mass In
Important since:

1. Helps to identify a compact object as a black hole.

2.The accurate calculation of MNSM strongly depends
on the knowledge of the nuclear equation of state up
to very high densities.

3. Related with the appearance of hyperons and other
degrees of freedom.

4. Helps to understand some of the more extreme NS
related processes like core-collapse supernovae,
magnetar flares, and NS mergers.



The basic assumptions

We consider the assumptions

1. the matter of the neutron star is a perfect fluid described by a one-parameter equation of
state between the pressure P and the density p

2. the density p is non negative (due to attractive character of gravitational forces)
3. the matter is microscopically stable, which is ensured by the conditions P > 0 and dP/dp > 0

4. below a critical density p. the equation of state is well known

From the above assumptions and the TOV equations 1t follows that the density and pressure
decreases outward in the star. In addition the radius R. at which the pressure is P. = P(p)
divides the neutron star into two regions. The core where r < R, and p > p. and the envelope
where r > R, and p < p,.

IC.E. Rhoades Jr. and R. Ruffini, Phys. Rev. Lett. 32, 324 (1974)



The upper limits of the speed of sound
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We consider the following three limits for the speed of sound

The speed of sound 1s defined as

v . . : _
1. —= < 1: causality limit from special relativity?
c
Vs 1 . 4
2. — < —: from (QCD and other theories
c V3

v, [(E—P/3\"*
3. — / . from relativistic kinetic theory?
c P+E& :

2]1.B. Hartle, Phys. Rep. 46, 201 (1978)
3P. Bedaque and A.W. Steiner, Phys.Rev.Lett. 114, 031103 (2015)

4T.S. Olson, Phys. Rev. C 63, 015302 (2002)



The maximum mass configuration achieved according to
the following structure for the neutron star EoS
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Nuclear equation of state models

The momentum dependent interaction model (Skyrme type)
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The non linear derivative model (NLD)
(Non-linear derivative interactions in relativistic hadrodynamics:

T. Gaitanos, M. Kaskulov and U. Mosel, NPA 828, 9-28 (2009))
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Microscopic model of neutron mater based on nuclear interaction derived from chiral
effective field theory (CEFT): Hebeler et al., PRL, 105 161102 (2010).
E(u,z) 3
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The H-HJ (Heisenerg and Hjiorth-Jensen) phenomenological model
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Relativistic Kinetic theory constraints
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The maximally incompressible EOS is taken from the equality
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The values of the constants C; and C, are determined my the help of the matching density n..



The TOV Equations
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To solve the TOV equations for P(r) and M(r) one can integrate outwards from the origin (r = 0)
to the pomt r = R where the pressure becomes zero. This point defines R as the coordmate radms
of the star. To do this, one needs an initial value of the pressure at r = 0, called Pe = P(r =0).
The radius R and the total mass of the star, M = M(R), depend on the value of Pe. To be able
to perform the mtegration, one also needs to know the energy density £(r) (or the density mass
p(r)) in terms of the pressure P(r). This relationship is the equation of state for neutron star
matter.



Tidal effects in binary systems

Tides Caused by Gravitational Force of the Moon
Earth

gravitational force
of the Moon

high tide high tide




Tidal Polarizability

Gravitational waves from the final stages of in-spiraling binary neutron stars are expected
to sources for ground-based gravitational wave detectors

The tidal polarizability and relative effects are potentially measurable when the waveform
of the GW is clean
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Averaged tidal polarizability for binary neutron star system
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FIG. 1. Mass-radius diagram for the equations of state used in the
present work.
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FIG. 3. The mass-radius diagram for five EoSs (EoS/normal
case, line with thick width) in comparison with the corresponding
maximum mass configuration results of the EoS/minstiff case (line
with medium width) and EoS/maxstiff case (line with thin width).
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FIG. 2. The speed of sound dependence on the pressure for the
EoSs used in the paper. The two specific upper bounds considered in
the present work v, = ¢ and v, = ¢/+/3 = 0.577¢ are also indicated.
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Ch.M, T. Gaitanos, Ch. Margaritis, G.Lalazissis, PRC95, 045801 (2017)
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Conclusions-Outlook

The knowledge of MNSM is important in order to identify the low mass black holes especially
In binary systems

The upper bound of the speed of sound is still an open problem in strongly interactive systems.

The stiffness of the equation of state strongly constrained by the upper limit of the speed of
sound. The upper limit vs=c is compatible with maximum mass up to 3 Msolar .

However the limit vs=c/3”(1/2) is in contradiction with the recent measurements of neutron star
with mass close to 2 Msolar.

The relativistic kinetic theory predict Mmax close to the value 2.7 Msolar.

The tidal polarizability is sensitive to the EoS and the relevant constraints introduced by the
speed of sound

We believe that the simultaneous measure of M and A will help to better understand the
stiffness limit of the equation of state.

Observation with third-generation detectors will be able to definitely provide constraints for
the stiffness of the EoS at high density and consequently to provide more information related
with the upper bound of the speed of sound



General Perspectives

The maximum and the minimum limit of neutron star mass related with the
nuclear equation of state at supranuclear and subnuclear densities respectively

Precise measurements of masses and radii for several individual neutron stars
would pin down the equation of state without recourse to models

The hadrons-quark phase transition at high densities.

The link between the microphysics of transport, heat flow, superfluidity, viscosity,
vortices tubes and the macro-modes in neutron star phenomenology

Measuring the neutron star equation of state with gravitational waves observations

Alternative theories (from general relativity) concerning mainly the strong-field
regime



