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Fig. 1. The binding energies of Pb isotopes obtained in the 
relativistic Hartree approximation with the forces NL1 and 
NL-SH. The empirical values (expt.) are also shown for 
comparison. 
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Fig. 2. The charge radii of Pb isotopes obtained with NL1 
and NL-SH. The empirical values (expt.) from laser spec- 
troscopic measurements [9] follow closely the charge radii 
from NL-SH. 

The RMS charge radii have been obtained as usual 
by folding the proton form factor with the proton den- 
sity distribution. The charge radii o f  Pb isotopes ob- 
tained for NL-SH and NL1 are shown in fig. 2. The 
empirical charge radii for Pb isotopes, as shown in 
this figure, have been obtained from the measured iso- 
tope shifts [ 8 ] employing the empirical [ 14 ] charge 
radius o f  2°spb as 5.503 fm. The charge radii from 
NL-SH follow closely the empirical ones implying that 
the experimental data is well described by NL-SH. 
The force NL1, on the other hand, overestimates the 
charge radii o f  Pb isotopes and especially those o f  the 
lighter neutron-deficient ones. 

The calculated charge radii have been used to ob- 
tain the isotope shifts. The nucleus 2°spb has been 
taken as the reference point. As in ref. [ 7 ], the isotope 
shifts (Arc 2 = rc 2 (A) - r 2 (208)) have been modified 
by substracting an equivalent o f  the liquid-drop dif- 
ference (zfrL2o = r2D (A) - rL20 (208)) obtained from 
r 2 (A) = ~,0-3~2~2/3, where r0 = 1.2 fm. Fig. 3 shows 
the calculated value o f  the modified isotope shifts 
(,dr 2 - Ar 2 )  for Pb nuclei. All the data have been 
presented in the same fashion. The empirical values 
are from the precision data obtained from the atomic 
beam laser spectroscopy [8]. The empirical data ex- 
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Fig. 3. The isotope shifts of Pb nuclei obtained with NLI 
and NL-SH. The empirical values [9] along with the values 
from NL-SH exhibit a conspicuous kink in the isotopes shifts 
about 2°sPb. The SkM* values [7] show a large deviation 
from the empirical data for heavier nuclei. 
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The spin orbit (SO) force introduced ~ 60 years ago
corrects the shell gaps.

RMF
Based on the Walecka meson exchange model
Major advantage SO term naturally from Dirac eq.

Both approaches successful along stability line - similar 
results 
SO difference appear in extreme isospin cases.
Well known example: isotopic shifts in charge radii in Pb

Non-Rel. MF
Skyrme: zero range
Gogny: finite range
Both use 2-body SO term - has to be adjusted

HIGHLY CONDENSED MATTER 505 

These parameters have been chosen to reproduce the correct binding energy and 
density of nuclear matter [24] {y = 4, l /pe - m,,c2 = -15.75 MeV, k, = 1.42~~l}. 
The resulting values of the dimensionless coupling constants are 

c, 2 
g.3” M2 

._ . _ = 
fic3 p2 

266.9, 

L’ 2 
g,” M2 

.- .--.- 1) 
hc m2 

= 195.7. 

For comparison, three curves from more standard nuclear-matter many-body 
theory are also shown in Fig. I. Curves I and II are derived in detail in reference 

(3.61a) 

(3.61b) 

FIG. 1. Binding energy per nucleon vs. Fermi wave number for nuclear matter computed 
from the linearized theory, Eqs. (3.38) and (3.43)-(3.45). The two dimensionless coupling constants 
(Eqs. (3.61)) have been chosen to reproduce the binding energy and density of nuclear matter 
{r = 4, c/pB - mbc2 = -15.75 MeV, kp = 1.42F-‘} [24]. For comparison, three curves from 
more standard nuclear matter many-body theory are also shown. Curves I and II are derived in 
detail in Ref. [24] (see Ref. [24, Fig. 41.71) while curve III is from the work of Pandharipande 
[22c] based on the nucleon-nucleon potentials of Reid. The prediction of the linearized theory 
for pure neutron matter, obtained by simply setting y  = 2, are also shown in this figure. 

Main goal:
Examine isospin/density dependence of spin-orbit (SO) in 

CDFT



Motivation: the 34Si bubble experiment
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FIG. 1. (color online) Proton densities of the nuclei 40Ca, 38Ar, 36S and 34Si for the functional

DD-ME2.

in 36S, resulting in an occupancy change of �(2s1/2) = 1.53.

This result came in addition to the findings of the earlier experiment by Burgunder et.

al. [19], where the energies and spectroscopic factors of the first 1f
7/2, 2p3/2, 2p1/2 and 1f

5/2

neutron states in the nucleus 35Si were measured through a (d, p) transfer reaction. Together

with the results of Refs. [22, 23], it was discovered that the 2p = 2p
1/2 � 2p

3/2 spin-orbit

splitting was considerably reduced as one goes from 36S to 34Si.

An important aspect of the spin-orbit force is its density and isospin dependence. It

is clearly stated in Refs. [19, 20] that the results of these two experiments are ideal for a

further theoretical investigation of the SO force deduced from the various nuclear density

functionals. In particular, the extreme neutron-to-proton density asymmetry in the case of

34Si and the subsequent large and abrupt reduction in the size of the p-spitting, can provide a

better constraint of the SO force, since these results isolate the contributions coming mostly

from its density and its isospin dependence.
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recent experiment effort - constraint on isospin dep. of 
SO 

Study N = 20 isotones 40Ca, 36S, 34Si

Concentrate on 
neutron states

1st Adv.: A ≈ 40 2p splitting around 2MeV and both SO                
partners accessible 

2n Adv.: Occurrence of ‘Bubble’ in 34Si proton dens.

Theory: [M.Grasso et.al. , PRC 79,034318 (2009)]

Expt: [A.Mutschler, O. Sorlin et.al. NPHYS3916 (2016)]
knock-out reaction 34Si(-1p)33Al 
Deduce Occupancy 0.17(3) of 2s1/2  only 10% cp to 36S

Since SO             see bubble structure influence SO 
splitting

• Main Goal: Determine isospin and density dependence of the SO force in 
CDFT.

• Calculate the SO splittings of the                            and the                        
neutron states  in 40Ca, 38Ar, 36S and 34Si in N = 20 isotones. Compare size 
and rel. reductions.

• Using self-consisted RMF methods from nuclear density functionals of 3 types
-Non-Linear: NL3
-Density Dependent Meson Exchange: DD-ME2
-Density Dependent Point Coupling: DD-PC1 

• Calculations in 3 steps:
1. Pure Mean-Field/No extra correlations
2. Including Pairing correlations in 38Ar, 36S and 34Si nuclei.
3. Investigating specific extensions of standard RMF: 

                 OPEP - Tensor force
                 Particle Vibrational Coupling (PVC) 

• Compare with non-Relativistic MF and with Experimental results. 

Introduction

2p = 2p1/2 − 2p3/2 1 f = 1 f5/2 −1 f7/2
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Introduction

2p = 2p1/2 − 2p3/2 1 f = 1 f5/2 −1 f7/2

40Ca ! 36S 36S ! 34Si

f p f p

NL3 10% 1% 8% 53%

DD-ME2 11% 8% 8% 40%

DD-PC1 9% 12% 9% 39%

Exp. 20% -20% 2% 43%

36S 34Si �(2S1/2)

NL3 1.83 0.20 1.62

DD-ME2 1.79 0.23 1.57

DD-PC1 1.77 0.30 1.47

Exp. 1.64 0.17 1.56

⌃ = S + V + ⌃(!) (1)

X

⌫

S⌫
k = 1 (2)

/ r⇢ (3)
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Motivation: the 34Si bubble experiment

other monopole terms such as the ones involving the proton
1d3=2 orbit are negligible.
Shell model calculations have been used in the full

sd-pf shells [30] (including cross-shell mixing between
normal and intruder neutron configurations [31]) as a tool
to determine the role of correlations and to deduce the
change of the p SO splitting Δ SO(p) between the 37S and
35Si nuclei from experimental data. The Vpn

2s1=22p1=2
and

Vpn
2s1=22p3=2

monopole terms have been constrained to match,
after taking into account the correlations in the full valence
space, the experimental energies of the major fragments
in the 37S and 35Si isotones, leading to −0.844 and

−1.101 MeV, respectively. The calculated 2s1=2 occupancy
varies from 1.66 in 37S (close to the experimental value
of ≃1.7 [32]) to 0.19 in 35Si, yielding Δ2s1=2 ¼ 1.47.
Following the previous discussion, Δ SOðpÞ can be
expressed as

ΔSOðpÞ≃ Δ2s1=2ðV
pn
2s1=22p1=2

− Vpn
2s1=22p3=2

Þ: (1)

Consistent values of Δ SOðpÞ ¼ 1.47 × 257 ¼ 378 keV
and 380 keVare found using Eq. (1) and the prescription of
Baranger [33], respectively. The latter value is obtained
from the energies of the single-particle centroids of the p3=2
and p1=2 states derived from the calculated particle and hole
energy weighted sum rules of all 3=2− and 1=2− states. The
agreement between the two methods shows that the earlier
assumption, that the changes in the p SO splitting are solely
carried by the Vsp monopoles, is correct. After applying a
quenching factor of 0.7 to the SM calculations, we find
that the calculated SF values of the major fragments 7=2−
(SF ¼ 0.59), 3=2− (0.59), 1=2− (0.61) and 5=2− (0.28)
agree with the experimental values of 0.56(6), 0.69(10),
0.73(10), 0.32(3).

Realistic two-body SO interactions.—The M3Y interaction
[34], constructed as a model to realistic G-matrix inter-
action, was used to calculate the two-body SO parts of the
monopole matrix elements for A≃ 40. We find that
~Vpn
2s1=22p1=2

( ~Vpn
2s1=22p3=2

) is repulsive (attractive) and amounts
to þ0.178 MeV (−0.089 MeV). Their difference,
0.267 MeV, is also in remarkable agreement with the value
of 0.257MeV derived from the experiment. We then look at
more modern interactions obtained from chiral effective
field theory [35] as well as from the Kahana-Lee-Scott
(KLS) potential [36], the latter being used for cross-shell
matrix elements in the SDPF-U interaction [31]. The next-
to-next-to-next-to leading order (N3LO) results (bare) of
Table I correspond to the V lowk renormalization with a
cutoff Λ ¼ 1.8 fm−1 in a harmonic oscillator basis with
ℏω ¼ 11.5 MeV, appropriate for A ∼ 36. We see a very
small sensitivity to the cutoff renormalization of the
interaction when many-body perturbation theory tech-
niques from [37] are applied respectively in a 2 (2ℏω)
and 4 (4ℏω) major shells basis. The order of magnitude of
the difference between the Vpn

2s1=21p3=2
and Vpn

2s1=21p1=2

FIG. 3 (color online). Distribution of themajor fragments of the
single particle strength in 41Ca (top), 37S (middle), and in 35Si
(bottom). SF values in 41Ca are taken from Ref. [29]. The
centroid of the 5=2− strength, obtained from a summed SF
strength of 0.32, is indicated as hf5=2i. The SF of the 5=2−
components in 37S are taken from [24], while all others SF are
derived from the present work with error bars due to statistics and
fit distributions.

TABLE I. Values of the proton-neutronmonopolematrix elements inMeVbetween the 2s1=2 proton and 2p neutron orbitals for theKLS
and N3LO interactions (bare), (2ℏω), (4ℏω). Their spin-tensor decomposition [11] into central (K ¼ 0) and spin-orbit (K ¼ 1) is also
given. The tensor term (K ¼ 2) amounts to zero in all cases. The K ¼ 1 terms of the M3Y interaction are given in the last row.

Monopole Vpn
2s1=22p1=2

Vpn
2s1=22p3=2

Decomposition Total K ¼ 0 K ¼ 1 Total K ¼ 0 K ¼ 1

N3LO (bare) −1.124 −1.317 0.193 −1.413 −1.317 −0.096
N3LO (2ℏω) −1.128 −1.312 0.184 −1.404 −1.312 −0.092
N3LO (4ℏω) −1.201 −1.401 0.200 −1.500 −1.401 −0.100
KLS −1.180 −1.374 0.194 −1.471 −1.374 −0.097
M3Y 0.178 −0.089
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Proposal: 
Use the bubble structure to constrain the SO force

Experiment [Burgunder et. al. PRL 112, 042502 
(2014):

transfer reaction 34Si(d,p)35Si
 Measure neutron s.p. energy with 

Results:
No change in 2p splitting between 41Ca and 37S

Large reduction of 2p between 37S and 35Si
No significant change for 1f splitting

Non-Rel. calculations
[M. Grasso et. al. , Phys. Rev. C 92, 054316 

(2015).] 
Using skyrme-SLy5 and Gogny-D1S functionals 

in the MF-HF level 



1.Pure Mean-Field
SO term in Mean-Field

RMF nucleons 4-cmpt Dirac spinors ψ
virtual mesons σ, ω, ρ, (δ)

Nucleons obey Dirac equation

3

• ! meson: J⇡, T = 1�, 0, short range repulsion

• ⇢ meson: J⇡, T = 1�, 1, isospin channel.

Inspired by ab-initio calculations [26] one has introduced
in some models in addition an isovector scalar meson, the
�-meson [15]:

• � meson: J⇡, T = 0+, 1, isospin channel.

The model is defined by the Lagrangian density

L = LN + Lm + Lint. (1)

LN denotes the Lagrangian of the free nucleon

LN =  ̄ (i�µ@µ �M) , (2)

where M is the bare nucleon mass and  denotes the
Dirac spinor. Lm is the Lagrangian of the free meson
fields and the electromagnetic field

Lm =
1

2
@µ�@

µ� � 1

2
m2
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2 +

1

2
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µ~� � 1

2
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1

2
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4
~Rµ⌫

~Rµ⌫ +
1

2
m2

⇢~⇢µ~⇢
µ

�1

4
Fµ⌫F

µ⌫ , (3)

with the corresponding masses m�, m!, m⇢, and ⌦µ⌫ ,
~Rµ⌫ , Fµ⌫ are the field tensors

⌦µ⌫ = @µ!⌫ � @⌫!µ

~Rµ⌫ = @µ~⇢⌫ � @⌫~⇢µ
Fµ⌫ = @µA⌫ � @⌫Aµ.

(4)

The minimal set of interaction terms is contained in Lint

Lint = �g� ̄ � � g� ̄~⌧ ~� (5)

�g! ̄�
µ !µ � g⇢ ̄~⌧�

µ · ~⇢µ � e ̄�µ Aµ.

where e vanishes for neutrons. It was recognised that
this linear model was not very successful for a quanti-
tative description of nuclei. Therefore Boguta and Bod-
mer [8] introduced a density dependence by non-linear
meson couplings replacing the quadratic term 1

2m
2
��

2 by
a renormalizable �4-theory

U(�) =
1

2
m2

��
2 +

1

3
g2�

3 +
1

4
g3�

4 (6)

Later on one has also introduced non-linear couplings in
the !- and ⇢-sector. As examples for such functionals
we use in this investigation the parameter set NL3 [27],
NL3* [28], and FSUGold [29].

Through the classical variation of the Lagrangian with
respect to the di↵erent fields we find the equations of
motion, the Dirac equation for the spinors and Klein-
Gordon equations for the mesons. In the static case with
time-reversal invariance have

(↵ · p+ �(M + S) + V ) i = "i i, (7)

where the relativistic scalar and vector fields S and V are
given by

S = g��+g�� and V = g!!
0+g⇢⌧3⇢

0
3+eA0. (8)

Varying the Lagrangian with respect to the meson
fields we get the Klein-Gordon type equations. Using
also the Lorentz gauge for the vector mesons they have
the following form

(��+m2
�)� = �g�

AX

i=1

 ̄i i � g2�
2 � g3�

3 (9)

(��+m2
�)� = �g�

AX

i=1

 ̄i⌧3 i (10)
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0 = g!

AX

i=1

 †
i i (11)

(��+m2
⇢)⇢

0
3 = g⇢

AX

i=1

 †
i ⌧3 i (12)

��A0 =
e

2

AX

i=1

 †
i (1� ⌧3) i (13)

The sources of the fields are the various densities as for
instance the scalar density ⇢s and the baryon density ⇢:

⇢s =
AX

i=1

 ̄i i, and ⇢ =
AX

i=1

 †
i i, (14)

and in a similar way we have the density for protons and
neutrons ⇢n and ⇢p. The summation runs always over the
occupied states in the Fermi sea (no-sea approximation).
More modern functionals describe the density depen-

dence not by non-linear meson couplings, but rather by
density dependent coupling constants: gi(⇢) (for i =
�, �,!, ⇢). Instead of following the approach with non-
linear terms, an idea to use density dependent couplings
was first proposed by Brockman and Toki [30], who de-
rived the density dependence from relativistic Brueckner-
Hartree-Fock calculations in nuclear matter at various
densities. Modern high precision functionals use various
phenomenological forms for the density dependence as
for instance the so-called Typel-Wolter ansatz [31]:

gi(⇢) = gi(⇢sat)fi(x) for i = �,! (15)

gi(⇢) = gi(⇢sat) exp[�ai(x� 1)] for i = �, ⇢ (16)

with

fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2
(17)

being a function of x = ⇢/⇢sat, where ⇢sat is the density
at saturation of symmetric nuclear matter. The Typel-
Wolter ansatz is used for the density functionals DD-
ME2 [32] and DD-ME� [15].

Relativistic fields scalar S and vector V.  (Time-rev.) 
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Later on one has also introduced non-linear couplings in
the !- and ⇢-sector. As examples for such functionals
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The sources of the fields are the various densities as for
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and in a similar way we have the density for protons and
neutrons ⇢n and ⇢p. The summation runs always over the
occupied states in the Fermi sea (no-sea approximation).
More modern functionals describe the density depen-

dence not by non-linear meson couplings, but rather by
density dependent coupling constants: gi(⇢) (for i =
�, �,!, ⇢). Instead of following the approach with non-
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being a function of x = ⇢/⇢sat, where ⇢sat is the density
at saturation of symmetric nuclear matter. The Typel-
Wolter ansatz is used for the density functionals DD-
ME2 [32] and DD-ME� [15].

In non-Rel. expansion:  
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Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
Therefore, in analogy to the non-relativistic Skyrme func-
tional, one has introduced forces with zero range, so-
called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
derivative terms and density dependent coupling con-
stants. In this investigation we use the point coupling
functionals PC-F1 [35] with a polynomial density depen-
dence and the point coupling functional DD-PC1 [36, 37]
with an exponential ansatz for the density dependence.

A. Isospin dependence of the spin-orbit force

As it is noted in [12, 13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addi-
tion of the two large fields, the vector field V produced
mainly by the short range repulsion of the ! meson, and
the scalar field S produced mainly by the attractive �-
mesons. The isovector mesons � and ⇢ contribute to the
iso-vector dependence of the spin-orbit splitting [15].

In the non-relativistic expansion of the Dirac equa-
tion [38] the spin-orbit term obtains the form
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with
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In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
di↵erence between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.

We thus obtain for the meson-coupling models with
Ci = g2i /m

2
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where for the meson-coupling models Ci = g2i /m
2
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(i = �,!, �, ⇢) and for the point coupling models Ci =
↵S ,↵V ,↵TS ,↵TV . This leads to

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ (23)

with W1 very close to W2:
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Of course, there is also a small isospin-dependence in
the e↵ective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants C⇢ + C� reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine C⇢�C� and not C⇢ and C�

independently [15]. Therefore the �-meson is neglected
in most of the successful parameter sets (C� = 0). In
principle C⇢ +C� could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-ME� [15] the coupling g�(⇢) was adjusted
to the splitting of the e↵ective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(�1 + �2) · (k̂† ⇥ �(r12)k̂) (25)

with r12 = r1 � r2, and k̂ = �(i/2)(r1 � r2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

W⌧ (r) = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ ⌧ = 1

2 (1 + ⌧̂1 · ⌧̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also
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relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
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called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
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nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
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in the spin-orbit term, but the exchange part of the force
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necessarily have to start with a Hamiltonian treated in
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mainly by the short range repulsion of the ! meson, and
the scalar field S produced mainly by the attractive �-
mesons. The isovector mesons � and ⇢ contribute to the
iso-vector dependence of the spin-orbit splitting [15].

In the non-relativistic expansion of the Dirac equa-
tion [38] the spin-orbit term obtains the form

VS.O. = W · (p⇥ �) (18)

with

W =
1

2M̃2
r(V � S) (19)

and the e↵ective mass

M̃ = M � 1

2
(V � S) (20)

In the spherical case we have

VS.O. =
1

4M̃2

1

r

d(V � S)

dr
` · s (21)

In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
di↵erence between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.

We thus obtain for the meson-coupling models with
Ci = g2i /m

2
i

V �S = (C!+C�)(⇢p+⇢n)+⌧3(C⇢+C�)(⇢p�⇢n) (22)

where for the meson-coupling models Ci = g2i /m
2
i

(i = �,!, �, ⇢) and for the point coupling models Ci =
↵S ,↵V ,↵TS ,↵TV . This leads to

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ (23)

with W1 very close to W2:

W1

W2
⇡ 1 + 2

C⇢ + C�

C! + C�
(24)

Of course, there is also a small isospin-dependence in
the e↵ective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants C⇢ + C� reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine C⇢�C� and not C⇢ and C�

independently [15]. Therefore the �-meson is neglected
in most of the successful parameter sets (C� = 0). In
principle C⇢ +C� could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-ME� [15] the coupling g�(⇢) was adjusted
to the splitting of the e↵ective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(�1 + �2) · (k̂† ⇥ �(r12)k̂) (25)

with r12 = r1 � r2, and k̂ = �(i/2)(r1 � r2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

W⌧ (r) = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ ⌧ = 1

2 (1 + ⌧̂1 · ⌧̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also
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with
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• ! meson: J⇡, T = 1�, 0, short range repulsion

• ⇢ meson: J⇡, T = 1�, 1, isospin channel.

Inspired by ab-initio calculations [26] one has introduced
in some models in addition an isovector scalar meson, the
�-meson [15]:

• � meson: J⇡, T = 0+, 1, isospin channel.

The model is defined by the Lagrangian density

L = LN + Lm + Lint. (1)

LN denotes the Lagrangian of the free nucleon

LN =  ̄ (i�µ@µ �M) , (2)

where M is the bare nucleon mass and  denotes the
Dirac spinor. Lm is the Lagrangian of the free meson
fields and the electromagnetic field

Lm =
1

2
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2
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2
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2
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2
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4
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1

2
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⇢~⇢µ~⇢
µ

�1

4
Fµ⌫F

µ⌫ , (3)

with the corresponding masses m�, m!, m⇢, and ⌦µ⌫ ,
~Rµ⌫ , Fµ⌫ are the field tensors

⌦µ⌫ = @µ!⌫ � @⌫!µ

~Rµ⌫ = @µ~⇢⌫ � @⌫~⇢µ
Fµ⌫ = @µA⌫ � @⌫Aµ.

(4)

The minimal set of interaction terms is contained in Lint

Lint = �g� ̄ � � g� ̄~⌧ ~� (5)

�g! ̄�
µ !µ � g⇢ ̄~⌧�

µ · ~⇢µ � e ̄�µ Aµ.

where e vanishes for neutrons. It was recognised that
this linear model was not very successful for a quanti-
tative description of nuclei. Therefore Boguta and Bod-
mer [8] introduced a density dependence by non-linear
meson couplings replacing the quadratic term 1

2m
2
��

2 by
a renormalizable �4-theory

U(�) =
1

2
m2

��
2 +

1

3
g2�

3 +
1

4
g3�

4 (6)

Later on one has also introduced non-linear couplings in
the !- and ⇢-sector. As examples for such functionals
we use in this investigation the parameter set NL3 [27],
NL3* [28], and FSUGold [29].

Through the classical variation of the Lagrangian with
respect to the di↵erent fields we find the equations of
motion, the Dirac equation for the spinors and Klein-
Gordon equations for the mesons. In the static case with
time-reversal invariance have

(↵ · p+ �(M + S) + V ) i = "i i, (7)

where the relativistic scalar and vector fields S and V are
given by

S = g�� (+g��) and V = g!!
0 + g⇢⌧3⇢

0
3 + eA0.

(8)
Varying the Lagrangian with respect to the meson

fields we get the Klein-Gordon type equations. Using
also the Lorentz gauge for the vector mesons they have
the following form

(��+m2
�)� = �g�

AX

i=1

 ̄i i � g2�
2 � g3�

3 (9)

(��+m2
�)� = �g�

AX

i=1

 ̄i⌧3 i (10)

(��+m2
!)!

0 = g!

AX

i=1

 †
i i (11)

(��+m2
⇢)⇢

0
3 = g⇢

AX

i=1

 †
i ⌧3 i (12)

��A0 =
e

2

AX

i=1

 †
i (1� ⌧3) i (13)

The sources of the fields are the various densities as for
instance the scalar density ⇢s and the baryon density ⇢:

⇢s =
AX

i=1

 ̄i i, and ⇢ =
AX

i=1

 †
i i, (14)

and in a similar way we have the density for protons and
neutrons ⇢n and ⇢p. The summation runs always over the
occupied states in the Fermi sea (no-sea approximation).
More modern functionals describe the density depen-

dence not by non-linear meson couplings, but rather by
density dependent coupling constants: gi(⇢) (for i =
�, �,!, ⇢). Instead of following the approach with non-
linear terms, an idea to use density dependent couplings
was first proposed by Brockman and Toki [30], who de-
rived the density dependence from relativistic Brueckner-
Hartree-Fock calculations in nuclear matter at various
densities. Modern high precision functionals use various
phenomenological forms for the density dependence as
for instance the so-called Typel-Wolter ansatz [31]:

gi(⇢) = gi(⇢sat)fi(x) for i = �,! (15)

gi(⇢) = gi(⇢sat) exp[�ai(x� 1)] for i = �, ⇢ (16)

with

fi(x) = ai
1 + bi(x+ di)2

1 + ci(x+ di)2
(17)

being a function of x = ⇢/⇢sat, where ⇢sat is the density
at saturation of symmetric nuclear matter. The Typel-
Wolter ansatz is used for the density functionals DD-
ME2 [32] and DD-ME� [15].
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Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
Therefore, in analogy to the non-relativistic Skyrme func-
tional, one has introduced forces with zero range, so-
called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
derivative terms and density dependent coupling con-
stants. In this investigation we use the point coupling
functionals PC-F1 [35] with a polynomial density depen-
dence and the point coupling functional DD-PC1 [36, 37]
with an exponential ansatz for the density dependence.

A. Isospin dependence of the spin-orbit force

As it is noted in [12, 13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addi-
tion of the two large fields, the vector field V produced
mainly by the short range repulsion of the ! meson, and
the scalar field S produced mainly by the attractive �-
mesons. The isovector mesons � and ⇢ contribute to the
iso-vector dependence of the spin-orbit splitting [15].

In the non-relativistic expansion of the Dirac equa-
tion [38] the spin-orbit term obtains the form

VS.O. = W · (p⇥ �) (18)

with

W =
1

2M̃2
r(V � S) (19)

and the e↵ective mass

M̃ = M � 1

2
(V � S) (20)

In the spherical case we have

VS.O. =
1

4M̃2

1

r

d(V � S)

dr
` · s (21)

In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
di↵erence between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.

We thus obtain for the meson-coupling models with
Ci = g2i /m

2
i

V �S = (C!+C�)(⇢p+⇢n)+⌧3(C⇢+C�)(⇢p�⇢n) (22)

where for the meson-coupling models Ci = g2i /m
2
i

(i = �,!, �, ⇢) and for the point coupling models Ci =
↵S ,↵V ,↵TS ,↵TV . This leads to

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ (23)

with W1 very close to W2:

W1

W2
⇡ 1 + 2

C⇢ + C�

C! + C�
(24)

Of course, there is also a small isospin-dependence in
the e↵ective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants C⇢ + C� reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine C⇢�C� and not C⇢ and C�

independently [15]. Therefore the �-meson is neglected
in most of the successful parameter sets (C� = 0). In
principle C⇢ +C� could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-ME� [15] the coupling g�(⇢) was adjusted
to the splitting of the e↵ective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(�1 + �2) · (k̂† ⇥ �(r12)k̂) (25)

with r12 = r1 � r2, and k̂ = �(i/2)(r1 � r2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

W⌧ (r) = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ ⌧ = 1

2 (1 + ⌧̂1 · ⌧̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also
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Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
Therefore, in analogy to the non-relativistic Skyrme func-
tional, one has introduced forces with zero range, so-
called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
derivative terms and density dependent coupling con-
stants. In this investigation we use the point coupling
functionals PC-F1 [35] with a polynomial density depen-
dence and the point coupling functional DD-PC1 [36, 37]
with an exponential ansatz for the density dependence.

A. Isospin dependence of the spin-orbit force

As it is noted in [12, 13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addi-
tion of the two large fields, the vector field V produced
mainly by the short range repulsion of the ! meson, and
the scalar field S produced mainly by the attractive �-
mesons. The isovector mesons � and ⇢ contribute to the
iso-vector dependence of the spin-orbit splitting [15].

In the non-relativistic expansion of the Dirac equa-
tion [38] the spin-orbit term obtains the form

VS.O. = W · (p⇥ �) (18)

with

W =
1

2M̃2
r(V � S) (19)

and the e↵ective mass

M̃ = M � 1

2
(V � S) (20)

In the spherical case we have

VS.O. =
1

4M̃2

1

r

d(V � S)

dr
` · s (21)

In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
di↵erence between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.

We thus obtain for the meson-coupling models with
Ci = g2i /m

2
i

V �S = (C!+C�)(⇢p+⇢n)+⌧3(C⇢+C�)(⇢p�⇢n) (22)

where for the meson-coupling models Ci = g2i /m
2
i

(i = �,!, �, ⇢) and for the point coupling models Ci =
↵S ,↵V ,↵TS ,↵TV . This leads to

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ (23)

with W1 very close to W2:

W1

W2
⇡ 1 + 2

C⇢ + C�

C! + C�
(24)

Of course, there is also a small isospin-dependence in
the e↵ective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants C⇢ + C� reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine C⇢�C� and not C⇢ and C�

independently [15]. Therefore the �-meson is neglected
in most of the successful parameter sets (C� = 0). In
principle C⇢ +C� could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-ME� [15] the coupling g�(⇢) was adjusted
to the splitting of the e↵ective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(�1 + �2) · (k̂† ⇥ �(r12)k̂) (25)

with r12 = r1 � r2, and k̂ = �(i/2)(r1 � r2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

W⌧ (r) = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ ⌧ = 1

2 (1 + ⌧̂1 · ⌧̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also
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Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
Therefore, in analogy to the non-relativistic Skyrme func-
tional, one has introduced forces with zero range, so-
called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
derivative terms and density dependent coupling con-
stants. In this investigation we use the point coupling
functionals PC-F1 [35] with a polynomial density depen-
dence and the point coupling functional DD-PC1 [36, 37]
with an exponential ansatz for the density dependence.

A. Isospin dependence of the spin-orbit force

As it is noted in [12, 13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addi-
tion of the two large fields, the vector field V produced
mainly by the short range repulsion of the ! meson, and
the scalar field S produced mainly by the attractive �-
mesons. The isovector mesons � and ⇢ contribute to the
iso-vector dependence of the spin-orbit splitting [15].

In the non-relativistic expansion of the Dirac equa-
tion [38] the spin-orbit term obtains the form

VS.O. = W · (p⇥ �) (18)

with

W =
1

2M̃2
r(V � S) (19)

and the e↵ective mass

M̃ = M � 1

2
(V � S) (20)

In the spherical case we have

VS.O. =
1

4M̃2

1

r

d(V � S)

dr
` · s (21)

In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
di↵erence between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.

We thus obtain for the meson-coupling models with
Ci = g2i /m

2
i

V �S = (C!+C�)(⇢p+⇢n)+⌧3(C⇢+C�)(⇢p�⇢n) (22)

where for the meson-coupling models Ci = g2i /m
2
i

(i = �,!, �, ⇢) and for the point coupling models Ci =
↵S ,↵V ,↵TS ,↵TV . This leads to

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ (23)

with W1 very close to W2:

W1

W2
⇡ 1 + 2

C⇢ (+C�)

C! + C�
(24)

Of course, there is also a small isospin-dependence in
the e↵ective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants C⇢ + C� reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine C⇢�C� and not C⇢ and C�

independently [15]. Therefore the �-meson is neglected
in most of the successful parameter sets (C� = 0). In
principle C⇢ +C� could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-ME� [15] the coupling g�(⇢) was adjusted
to the splitting of the e↵ective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(�1 + �2) · (k̂† ⇥ �(r12)k̂) (25)

with r12 = r1 � r2, and k̂ = �(i/2)(r1 � r2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

W⌧ (r) = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ ⌧ = 1

2 (1 + ⌧̂1 · ⌧̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also
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Meson exchange forces with finite meson masses are
relatively complicated, in particular for triaxially de-
formed nuclei or for applications of time-dependent den-
sity functional theory for the description of excited states.
Therefore, in analogy to the non-relativistic Skyrme func-
tional, one has introduced forces with zero range, so-
called point coupling models [33]. These are generaliza-
tions of the Nambu-Jona Lasinio model [34] including
derivative terms and density dependent coupling con-
stants. In this investigation we use the point coupling
functionals PC-F1 [35] with a polynomial density depen-
dence and the point coupling functional DD-PC1 [36, 37]
with an exponential ansatz for the density dependence.

A. Isospin dependence of the spin-orbit force

As it is noted in [12, 13], the spin-orbit coupling arises
naturally in the relativistic formalism from the addi-
tion of the two large fields, the vector field V produced
mainly by the short range repulsion of the ! meson, and
the scalar field S produced mainly by the attractive �-
mesons. The isovector mesons � and ⇢ contribute to the
iso-vector dependence of the spin-orbit splitting [15].

In the non-relativistic expansion of the Dirac equa-
tion [38] the spin-orbit term obtains the form

VS.O. = W · (p⇥ �) (18)

with

W =
1

2M̃2
r(V � S) (19)

and the e↵ective mass

M̃ = M � 1

2
(V � S) (20)

In the spherical case we have

VS.O. =
1

4M̃2

1

r

d(V � S)

dr
` · s (21)

In order to have a rough estimate for the isospin de-
pendence we make the following approximations: (i)we
neglect non-linear meson couplings as well as the density
dependence of the coupling constants, (ii) we neglect the
di↵erence between scalar and vector density, and (iii) we
solve the Klein-Gordon equations in local density approx-
imation, i.e. we neglect the Laplacians.

We thus obtain for the meson-coupling models with
Ci = g2i /m

2
i

V �S = (C!+C�)(⇢p+⇢n)+⌧3(C⇢+C�)(⇢p�⇢n) (22)

where for the meson-coupling models Ci = g2i /m
2
i

(i = �,!, �, ⇢) and for the point coupling models Ci =
↵S ,↵V ,↵TS ,↵TV . This leads to

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ (23)

with W1 very close to W2:

W1

W2
⇡ 1 + 2

C⇢ + C�

C! + C�
(24)

Of course, there is also a small isospin-dependence in
the e↵ective mass M̃ and, because of the density depen-
dence, these parameters depend on r. However, in the
relevant region, for all the models, the isovector coupling
constants C⇢ + C� reach only 10-20 % of the isoscalar
values.
In principle the fit to experimental data in finite nuclei

does only allow to determine C⇢�C� and not C⇢ and C�

independently [15]. Therefore the �-meson is neglected
in most of the successful parameter sets (C� = 0). In
principle C⇢ +C� could have a large value, as it happens
in the isoscalar case with the extremely large scalar and
vector potentials S and V , which cancel in the normal
mean field, but add up in the spin-orbit term. There
are, however, strong indications from ab-initio calcula-
tions that this is not the case. In fact, in the param-
eter set DD-ME� [15] the coupling g�(⇢) was adjusted
to the splitting of the e↵ective Dirac mass between pro-
tons and neutrons, as it has been calculated in relativis-
tic Brueckner-Hartree-Fock calculations in nuclear mat-
ter by the Tuebingen group [26].
In the non-relativistic density functionals of Skyrme

and Gogny type the spin-orbit term is derived from a
zero-range two-body spin-orbit interaction of the form

V
(SO)
12 (r12) = iW0(�1 + �2) · (k̂† ⇥ �(r12)k̂) (25)

with r12 = r1 � r2, and k̂ = �(i/2)(r1 � r2). The
parameter W0, together with the remaining parameters,
is determined phenomenologically through a fit to finite
nuclei. Since these are Hartree-Fock calculations, the
exchange term leads to a very specific isospin dependence
and the spin-orbit term has the form of Eq. (18) with

W⌧ (r) = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (26)

here the parameters W1 and W2 are constants and be-
cause of the exchange term one finds

W1

W2
= 2. (27)

As we see in this standard formulation of non-relativistic
forces, there is no explicit isospin or density dependence
in the spin-orbit term, but the exchange part of the force
introduces a strong isospin dependence because of the
isospin exchange operator P̂ ⌧ = 1

2 (1 + ⌧̂1 · ⌧̂2) . It has
been found that this particular property of the SO term
leads to considerable problems in reproducing the iso-
tope shifts in nuclear charge radii in the Pb region (see
Refs. [9, 17]), which is not the case for the relativistic
models. Of course, density functional theory does not
necessarily have to start with a Hamiltonian treated in
Hartree-Fock approximation. In principle one can also



5
r (fm)

0

0.05

0.1

0.15

0.2

p
ro

to
n
 d

en
si

ty
 [

fm
-3

]

 ρ
n

 ρ
p

 ρ
tot

34Si

1.Pure Mean-Field
SO term in Mean-Field

5
r (fm)

0

0.05

0.1

0.15

0.2

p
ro

to
n

 d
en

si
ty

 [
fm

-3
]

 ρ
n

 ρ
p

 ρ
tot

472 P.-G. Reinhard, H. Flocard/Nuclear Physics A 584 (1995) 467-488 

E 

-20  
I19 

i - - 1  

-30  

¢1 

-40  

I r I I I I I 

0 ~ ) - - - ' : ' -  ..~, \ 

- 1 o : " " -  ~ 

 '11 2 - , .  // 
Skyr rne  N ~ /'~, I [ 

.---- .......... NL:z  \ ~  ] 
. . . .  S k i 4  \ \ . /]  
. . . . . .  Ski5 V 

-50 

I I I I 

20apb 
I I I 

10 12 
I I I I I I I I 

2 4 6 8 
r [ fm] 

Fig. 4. The neutron spin-orbi t  potential W/s,n for the four parametrizations as indicated, the relativistic NL-Z, 
the conventional  Skyrme force "Skyrme M*",  and the two new sets Skl4 and Ski5. The potential is multiplied 
by the radial weight  r 2 to allow a better comparison of  the relative strengths. 

One can transform the Dirac equation of  the RMF model into an energy-dependent 
effective Schr6dinger equation. This energy dependence can then be removed via a 
nonrelativistic expansion which provides an effective hamiltonian of  the form (1),  see 
Ref. [5] .  The structure of  the effective mass and spin-orbit potentials look however 
different from those derived with the Skyrme force (2).  They read 

h 2 (4) 
BRMF = 2m - Ceffp ' 

h2 
WRMF = V B  = (2m - Ceffp) 2CeffVp' (5) 

g,~/m¢+g,o/m,o). where Cefr is related to the scalar and vector coupling strengths (Ceff = 2 2 2 2 
In fact, it is not the mass density p which enters these expressions, but the density 
folded with a Yukawa potential whose range is given by the masses of  the scalar and 
vector mesons. In order to keep the expressions simple we have omitted this feature 
from the Eqs. (4) and (5).  As shown in Ref. [5] ,  the solutions of  the Schr6dinger-like 
hamiltonian hpd~F obtained in this way, are very close to those obtained with the original 
relativistic equation. 

Both the Skyrme and RMF-equivalent hamiltonians have therefore a similar structure 
with an effective inverse mass B and a spin-orbit potential W. However, some differences 
exist: 

(i) Folded densities instead of  bare densities enter the relativistic expressions of  B and 
W. We have checked that this folding has no significant influence on the nuclear 
properties discussed in the present article. The test involves a modified Skyrme 
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Fig. 6. Compilation o f  results for different parametrizations as indicated in the uppermost box. The box (a)  
shows the isotope shifts on charge r.m.s, radii for 214pb-2°spb, 84Sr-88Sr, and 48Ca-4°Ca. The box (b)  shows 
the quality measure X 2 where the dotted line excludes data on 160. In box ( c )  fol lows the positions of  the 
isovector L = 1 resonance and the isoscalar L = 0 and L = 2 resonances in 2°spb. The box (d)  shows the low 
lying 3_  state in 4°Ca. 

4.3. Results for  finite nuclei and isotope shifts 

The results obtained with the different relativistic and nonrelativistic parametrizations 
are summarized in the four parts of Fig. 6. They include three old parametrizations: 
the SHF force SkM* form [11], and the two RMF forces NL-Z from Ref. [12] and 
NL-SH from Ref. [ 38 ]. Each time, we have used the prescription for the center-of-mass 
correction to the total energy Ec.m. employed when the force was defined. For NL-Z and 
all the newly fitted forces, we have subtracted Ec.m. = (P2m.)/2mA after the solution of 
the Hartree-Fock equations. 

In the second part of Fig. 6 we display results for the isotope shifts of Ca, Sr and 
Pb. The first column presents the experimental data. The second column shows the 
corresponding values corrected for the effects of GSC as discussed in the subsection 
(4.1). In our opinion, these are the values which should be compared to mean-field 

Normal ‘Bubble’
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The results of the non-relativistic pure mean-field cal-
culations shown in Table I provide a similar qualitative
picture. From 40Ca to 36S the f - and p- splittings are
only slightly decreasing with relative reductions 6% and
8% to 8% and 13%. In the transition from 36S to 34Si
there is also the sudden and relatively large reduction in
the size of the p-splitting of about 43%, but also a bigger
reduction of the size of the f -splittings.

When we compare relativistic and non-relativistic re-
sults, we observe the following di↵erences. In general,
the sizes of the splittings in all the relativistic models are
smaller than the respective splittings in non-relativistic
SLy5 and D1S models. More specifically in the nuclei
40Ca and 36S, where the proton density has the normal
profile, i.e. no central depletion, the di↵erence in the size
of f -splittings is in the order of 1-2 MeV and the size of
the p-splittings is around 0.5 MeV

In the interesting case of the bubble nucleus 34Si, the
f -splittings are of the same size because of the bigger rel-
ative reduction that appears in the non-relativistic case.
This is not present in the relativistic models. However
there is a di↵erence in the p-splittings which are rela-
tively small in size for all the relativistic functionals. This
is translated into a relative reduction of the p-splitting
when we go from 36S to 34Si, which is larger for most of
the relativistic models as compared to the relative reduc-
tion for non-relativistic models (see tables I and II).

In order to understand all these results we have to
investigate explicitly the spin-orbit force and especially
its isospin dependence which is very important in the case
of 34Si with a large neutron-to-proton asymmetry. As we
discussed in IIA, in both relativistic and non-relativistic
models this force can be approximately written as in Eq.
(18)

VS.O. = W · (p⇥ �) . (52)

Here W is given by the expression

W⌧ = W1r⇢⌧ +W2r⇢⌧ 0 6=⌧ . (53)

In most of the nuclei the properties of the nuclear force
lead to an almost constant density in the interior of the
nucleus. The spin-orbit force is mostly determined by the
gradient of the densities and, therefore, by the surface
di↵useness. This creates an attractive potential peaked
at the surface. States with large `-values have larger `s
values. In addition, they are peaked near the surface and,
therefore, they are influenced more by this force. This
produces the large f -splittings and the much smaller p-
splittings in 40Ca, 38Ar, and 36S.

On the other hand, bubble nuclei like 34Si have a cen-
tral density depletion, which provides an additional com-
ponent to the spin-orbit force in the interior of the nu-
cleus with the opposite sign, since the derivative of the
density is positive at the origin. So, together with the at-
tractive well around the surface we also have a repulsive
peak close to the center of the nucleus, see also [70, 71].
Neutron states with low angular momentum have larger

amplitudes near the center, as one can see in Fig. 4. This
implies that they feel a much weaker spin-orbit force and
it explains the sudden reduction of the p-splittings when
we go from 36S to 34Si as it is shown in the left panel of
Fig. 3. This e↵ect is not seen for the f -splittings in the
relativistic models (right panel of Fig. 3).
To understand the aforementioned di↵erences between

relativistic and non-relativistic models, we concentrate
on the isospin dependence of the SO term W , which is
determined by the ratio between the two parameters W1

and W2. In the relativistic models the value of this ratio
depends on the density and can take di↵erent values for
various nuclei, especially for functionals where the cou-
pling constants are also density dependent, as explained
in Ref. [72]. In that reference there is a calculation of
this ratio for several nuclei, including 34Si, as a function
of the nuclear radius. For the functionals DD-ME2 and
DD-PC1 at the nuclear center one has W1/W2 ⇡ 1.07.
We also give in Table II a rough estimate of this ratio for
the non- linear models, using equation (24) and neglect-
ing its density dependence. In general, for the relativistic
density functionals, the value of this ratio is close to unity
and the isospin dependence is very weak. On the other
hand for the standard Skyrme and Gogny models one has
W1/W2 = 2 and a stronger isospin dependence. As it
was concluded in Ref. [17], the additional isospin depen-
dence in the non-relativistic models creates a stronger
spin-orbit force around the surface and produces larger
splittings for states with large angular momentum.
This picture is reversed in the case of a bubble nucleus,

where the size of the repulsive peak is bigger for the rela-
tivistic models, as it is very clearly shown in Ref. [71]. As
a result the SO force will be even weaker and the size of
the splitting of the p-states is more dramatically reduced
than in the standard non-relativistic forces. Our results
lead to the same conclusion.

B. The e↵ect of pairing correlations

Pairing correlations and the related pairing gap can af-
fect the size of the SO splittings. Already in Ref. [21] it
was shown within the framework of Relativistic Hartree
Bogoliubov calculations that pairing correlations reduce
the size of the bubble in 34Si. According to this result
and based on the previous discussion we expect to see a
weakening of the bubble e↵ect therefore larger absolute
sizes and smaller relative reductions of the p-splitting, as
compared to the pure Hartree-calculations without pair-
ing.
As discussed in section II B, in superfluid nuclei we deal

with quasi-particles. The occupancy of each state is cal-
culated self-consistently. It is determined by the strength
of the pairing force. Obviously, for cases with zero pair-
ing the occupation probability is one for occupied states
below the Fermi surface and zero for unoccupied states
above the Fermi surface. Subsequently, in the present
work, we introduce pairing correlations in the proton sub-
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Most nuclei 
• Attractive well around the surf.
• States with large l most affected

repulsive 
peak

r  [ fm ] 

RMF
Skyrme

(illustration)

Non-Rel. deeper 
than RMF 

Larger SO 
splittings

‘Bubble’ nuclei 
• Additional repulsive peak at 

center.
• States with small l most affected-

Reduces the size of the 2p 
splitting

RMF larger 
peak

Smaller 2p 
Greater reduction



1.Pure Mean-Field
Numerical results

34363840
Mass number A 

0

0.5

1

1.5

2

2.5

3

E
 (

M
eV

)

NL3
DD-ME2
DD-PC1
SLy5
D1S
Exp.

34363840
Mass number A 

5

5.5

6

6.5

7

7.5

8

8.5

9

(p) (f)

Evolution of the neutron SO splittings with A
    RMF results in general 

-No change in 2p from             
40Ca -> 36S

-Small, gradual reduction in 1f 
split.

-Large sudden reduction in         
36S -> 34Si ‘bubble’ 

Differences with non-Rel. and expt.
-Smaller size in all SO splittings
-f split. similar in 34Si because of 

the rel. reduction in SLy5-D1S
-Larger relative reduction of the 2p 

splitting in the 36S -> 34Si 
transition



2.The effect of pairing
RHB framework

12

38Ar 36S 34Si

�(3)

C (MeV) 0.93 0.45 1.95

TABLE III. Gap values calculated with the odd-even mass
formula in Eq. (54).

system and evaluate again the single-particle energies of
the same neutron states as before. This is done for each
nucleus, except from the case of 40Ca which is a doubly
magic nucleus. We also calculate the occupation proba-
bilities of the proton 2s1/2 state for 36S and 34Si, since
the bubble structure in 34Si is created because of this
state being almost empty.

In this context we use the TMR separable pairing force
of Ref. [45] for the short range correlations. As we men-
tioned in Sect. II B, this kind of separable pairing force
has been adjusted to reproduce the pairing gap of the
Gogny force D1S in symmetric nuclear matter [45]. Both
forces are of finite range and therefore they show no ul-
traviolet divergence and do not depend on a pairing cut-
o↵. They provide a very reasonable description of pair-
ing correlations all over the periodic table with a fixed
set of parameters. However, careful investigations of the
size of these pairing correlations by comparing theoreti-
cal results with experimental odd-even mass di↵erences
and experimental rotational moments of inertia [73] have
shown that the pairing correlations produced by these
forces are slightly too strong for heavy nuclei and slightly
too week for light nuclei. In order to avoid such problems
in details of the description of pairing correlations in our
relatively light isotonic chain and following the prescrip-
tion of Ref. [73] we have introduced a scaling factor for
the strength of the TMR-force. In order to adjust this
factor in the proton channel we have used the version of
the 3-point odd-even staggering (OES) formula proposed
in Ref. [74]

�(3)
C (N) =

1

2
[B(N,Z) +B(N � 2, Z)� 2B(N � 1, Z)]

(54)
This is actually equivalent to the original 3-pt gap for-
mula Eq. (38) but given for odd nuclei �3(N � 1) (see
Ref. [75]). The binding energies were taken from the
atomic mass evaluation in Ref. [76] and the resulting gaps
are shown in table III.

The SO splittings and the respective reductions found
in these calculations are shown in Table IV. In Fig. 4 we
present again a schematic representation of the evolution
of SO splittings for all the forces with respect to the mass
number.

Comparing the results of the calculations including
pairing with the previous pure mean-field results we get
the same qualitative picture. The f -splittings show again
a gradual reduction as we go down the chain of isotones.
The p-splittings stay roughly in the same size between
the first three nuclei and are reduced dramatically for
the last nucleus where there is the bubble structure. The

40Ca 38Ar 36S 34Si

f p f p f p f p

NL3 7.21 1.69 6.92 1.64 6.46 1.68 5.94 0.80

NL3* 7.07 1.76 6.78 1.76 6.32 1.80 5.77 0.85

FSUGold 7.14 1.38 6.89 1.12 6.35 1.04 5.72 0.65

DD-ME2 7.40 1.71 7.08 1.64 6.55 1.57 6.00 0.94

DD-ME� 6.97 1.51 6.82 1.30 6.46 1.16 5.90 0.83

DD-PC1 7.83 1.77 7.58 1.67 7.14 1.56 6.52 0.96

PC-PF1 6.88 1.76 6.65 1.78 6.27 1.83 5.71 0.98

Exp. 6.98 1.66 5.61 1.99 5.5 1.13

40Ca ! 36S 36S ! 34Si

f p f p

NL3 10% 1% 8% 53%

NL3* 11% -3% 9% 53%

FSUGold 11% 24% 10% 38%

DD-ME2 11% 8% 8% 40%

DD-ME� 7% 23% 9% 28%

DD-PC1 9% 12% 9% 39%

PC-PF1 9% -4% 9% 46%

Exp. 20% -20% 2% 43%

TABLE IV. Same as Table II but for the case of TMR pairing.
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FIG. 4. Same as FIG. 3 but with TMR pairing.

inclusion of pairing correlation increases the f - splittings
and reduces the p-splittings in 38Ar and 36S from the
respective splittings in the pure mean field calculations.
This change is very small for 38Ar and slightly bigger for
36S for the p-states and the other way around for the f -
splittings, where in the case of 36S they are practically un-

Pairing correlation in proton channel of 38Ar, 36S and 34Si 
Generalised Hartree-Bogolyubov framework of quasi-
particles 

5

use general density functionals, where the exchange con-
tribution contains a free parameter xW. In this case
the density functional, i.e. the expectation value of the
energy, is determined in Hartree-approximation from a
slightly modified spin-orbit term [17, 39]

VSO = iW0
1

2
(1 + xwP̂

⌧ )(�1 + �2)k̂
† ⇥ �(r12)k̂. (28)

When the single-particle field is derived from this func-
tional we end up with a spin-orbit potential of the form
(26) with W1 = W0(1 + xw)/2, W2 = W0/2. Using
the modified Skyrme ansatz there is the ability to allow
for change in the isospin-dependence of Skyrme forces
through the parameter xw [17, 39]. With this kind of
modification one was able to reproduce the kink isotopic
shifts of Pb nuclei.

B. Pairing correlations

The theory we have presented above remains in the
Relativistic Mean-Field level and since we neglect any
exchange terms we have a Relativistic Hartree approxi-
mation to describe the long-range particle-hole correla-
tions in a nucleus. However, in open-shell nuclei we know
that particle-particle correlations are important and one
should have to take them into account explicitly. In the
non-relativistic functionals this is done in the Hartree-
Fock-Bogoliubov (HFB) theory [40, 41] that provides a
unified picture for the mean field and pairing correla-
tions. The relativistic version of the transformation is a
hybrid where the long-range interaction is given by the
Lorenz-covariant Langrangians, we have given above, and
the short-range interaction is produced by e↵ective non-
relativistic forces. Pairing correlations can be easily in-
cluded in the framework of density functional theory, by
using a generalized Slater determinant |�i of the Hartree-
Bogoliubov type. The ground state of a nucleus |�i is
represented as the vacuum with respect to independent
quasi-particle operators

↵+
k =

X

l

Ulkc
+
l + Vlkcl, (29)

where Ulk, Vlk are the Hartree-Bogoliubov coe�cients.
They determine the hermitian single-particle density ma-
trix

⇢̂ = V ⇤V T , (30)

and the antisymmetric pairing tensor

̂ = V ⇤UT . (31)

The energy functional depends not only on the density
matrix ⇢̂ and the meson fields �m, but also on the pairing
tensor.

E[⇢̂, ̂,�m] = ERMF [⇢̂,�m] + Epair[̂], (32)

where ERMF [⇢̂,�] is the RMF -functional. The pairing
energy Epair[̂] is given by

Epair[̂] =
1

4
Tr [̂⇤V pp̂] . (33)

V pp is a general two-body pairing interaction.
To get a static solution for ground states of open-shell

nuclei in this framework, we have to solve the Hartree-
Bogoliubov equations

✓
ĥ�m� � �̂

��̂⇤ �ĥ+m+ �

◆✓
Uk(r)
Vk(r)

◆
= Ek

✓
Uk(r)
Vk(r)

◆
.

(34)
This system of equations contains two average poten-

tials: the self-consistent mean field ĥ, which encloses all
the long range particle-hole (ph) correlations, and the
pairing field �̂, which includes the particle-particle (pp)
correlations. The single-particle potential ĥ results from
the variation of the energy functional with respect to the
hermitian density matrix ⇢̂

ĥ =
�E

�⇢̂
, (35)

and the pairing field is obtained from the variation of the
energy functional with respect to the pairing tensor

�̂ =
�E

�̂
. (36)

The chemical potential � is determined by the particle
number subsidiary condition in order that the expecta-
tion value of the particle number operator in the ground
state equals the number of nucleons. The column vec-
tors denote the quasi-particle wave functions, and Ek are
the quasi-particle energies. The dimension of the RHB
matrix equation is two times the dimension of the corre-
sponding Dirac equation. For each eigenvector (Uk, Vk)
with positive quasi-particle energy Ek > 0, there exists
an eigenvector (V ⇤

k , U
⇤
k ) with quasi-particle energy �Ek.

Since the baryon quasi-particle operators satisfy fermion
commutation relations, the levels Ek and �Ek cannot
be occupied simultaneously. For the solution that corre-
sponds to a ground state of a nucleus with even particle
number, one usually chooses the eigenvectors with posi-
tive eigenvalues Ek.
The eigen-solutions of Eq. (34) form a set of orthog-

onal (normalized) single quasi-particle states. The cor-
responding eigenvalues are the single quasi-particle ener-
gies. The self-consistent iteration procedure is performed
in the basis of quasi-particle states. The resulting RHB-
function is analyzed in the canonical basis [42], where it
has the form of a BCS-function. In this basis the density
matrix Rkk0 =

⌦
Vk(r)

��Vk0(r)
↵
is diagonal and its eigen-

values are the BCS-occupation probabilities

v2µ =
1

2

2

41� "µ � �q
("µ � �)2 +�2

µ

3

5 . (37)

Use TMR pairing force - equivalent to Gogny finite 
range - avoid cutoff 
Pairing strength adjusted to OES

Single particle energies obtained in canonical basis
RHB equivalent to RMF + BCS 
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use general density functionals, where the exchange con-
tribution contains a free parameter xW. In this case
the density functional, i.e. the expectation value of the
energy, is determined in Hartree-approximation from a
slightly modified spin-orbit term [17, 39]

VSO = iW0
1

2
(1 + xwP̂

⌧ )(�1 + �2)k̂
† ⇥ �(r12)k̂. (28)

When the single-particle field is derived from this func-
tional we end up with a spin-orbit potential of the form
(26) with W1 = W0(1 + xw)/2, W2 = W0/2. Using
the modified Skyrme ansatz there is the ability to allow
for change in the isospin-dependence of Skyrme forces
through the parameter xw [17, 39]. With this kind of
modification one was able to reproduce the kink isotopic
shifts of Pb nuclei.

B. Pairing correlations

The theory we have presented above remains in the
Relativistic Mean-Field level and since we neglect any
exchange terms we have a Relativistic Hartree approxi-
mation to describe the long-range particle-hole correla-
tions in a nucleus. However, in open-shell nuclei we know
that particle-particle correlations are important and one
should have to take them into account explicitly. In the
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↵+
k =

X

l

Ulkc
+
l + Vlkcl, (29)

where Ulk, Vlk are the Hartree-Bogoliubov coe�cients.
They determine the hermitian single-particle density ma-
trix

⇢̂ = V ⇤V T , (30)

and the antisymmetric pairing tensor

̂ = V ⇤UT . (31)

The energy functional depends not only on the density
matrix ⇢̂ and the meson fields �m, but also on the pairing
tensor.

E[⇢̂, ̂,�m] = ERMF [⇢̂,�m] + Epair[̂], (32)

where ERMF [⇢̂,�] is the RMF -functional. The pairing
energy Epair[̂] is given by

Epair[̂] =
1

4
Tr [̂⇤V pp̂] . (33)

V pp is a general two-body pairing interaction.
To get a static solution for ground states of open-shell

nuclei in this framework, we have to solve the Hartree-
Bogoliubov equations
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(34)
This system of equations contains two average poten-

tials: the self-consistent mean field ĥ, which encloses all
the long range particle-hole (ph) correlations, and the
pairing field �̂, which includes the particle-particle (pp)
correlations. The single-particle potential ĥ results from
the variation of the energy functional with respect to the
hermitian density matrix ⇢̂

ĥ =
�E

�⇢̂
, (35)

and the pairing field is obtained from the variation of the
energy functional with respect to the pairing tensor

�̂ =
�E

�̂
. (36)

The chemical potential � is determined by the particle
number subsidiary condition in order that the expecta-
tion value of the particle number operator in the ground
state equals the number of nucleons. The column vec-
tors denote the quasi-particle wave functions, and Ek are
the quasi-particle energies. The dimension of the RHB
matrix equation is two times the dimension of the corre-
sponding Dirac equation. For each eigenvector (Uk, Vk)
with positive quasi-particle energy Ek > 0, there exists
an eigenvector (V ⇤

k , U
⇤
k ) with quasi-particle energy �Ek.

Since the baryon quasi-particle operators satisfy fermion
commutation relations, the levels Ek and �Ek cannot
be occupied simultaneously. For the solution that corre-
sponds to a ground state of a nucleus with even particle
number, one usually chooses the eigenvectors with posi-
tive eigenvalues Ek.
The eigen-solutions of Eq. (34) form a set of orthog-

onal (normalized) single quasi-particle states. The cor-
responding eigenvalues are the single quasi-particle ener-
gies. The self-consistent iteration procedure is performed
in the basis of quasi-particle states. The resulting RHB-
function is analyzed in the canonical basis [42], where it
has the form of a BCS-function. In this basis the density
matrix Rkk0 =

⌦
Vk(r)

��Vk0(r)
↵
is diagonal and its eigen-

values are the BCS-occupation probabilities

v2µ =
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5 . (37)



2.The effect of pairing
Proton densities

0

0.05

0.1

0.15

0.2 No pairing
With pairing 

1 2 3 4 5
r (fm) 

0

0.05

0.1

0.15

0.2

36
S

34
Si

 ρ
p

 ρ
tot.

 ρ
p

 ρ
tot.

Pairing effect on densities

- Occupancy of 2s1/2: decreased in 36S
                                     increased in 34Si
- Larger surface diffusion
- Smoothening of the Bubble structure

13

36S 34Si �(2S
1/2)

NL3 1.83 0.20 1.62

NL3* 1.87 0.23 1.64

FSUGold 1.25 0.16 1.09

DD-ME2 1.79 0.23 1.57

DD-ME� 1.22 0.60 1.02

DD-PC1 1.77 0.30 1.47

PC-PF1 1.86 0.36 1.49

Exp.[20] 1.64 0.17 1.56

TABLE V. Occupation probabilities of the 2s
1/2 proton state

in 36S and 34Si for the TMR pairing force.

changed. For the last nucleus 34Si this picture is reversed
and one gets smaller f -splittings and larger p-splittings
again in the same order of magnitude of 0.1MeV. This
last e↵ect corrects for the enhanced e↵ect of the bubble
structure and the sudden reduction of the p-splitting as
one goes from 36S to 34Si.

For a better understanding how pairing correlations
lead to this di↵erences we present in Table V the occu-
pation factors of the 2s1/2 proton state in 36S and 34Si.
In addition we compare in Fig. 5 the radial profiles of the
total and proton densities of 38Ar, 36S, and 34Si with and
without pairing for the parameter set NL3.

For 38Ar, pairing a↵ects mostly the 1d proton orbit
with its two last 2 protons in the 1d3/2 state. Here the
surface density becomes more di↵used and the spin-orbit
force has a greater overlap with the f neutron states
making the corresponding splittings slightly bigger. In
the 36S pairing influences the central densities reducing
the size of the peak with a tendency to flatten it out.
This can also be seen by the reduced occupancy of the
2s1/2 proton state which is now smaller than 2. This cre-
ates a less attractive SO force around the center and so
the splittings of the neutron p states appear somewhat
smaller.

For the case of 34Si pairing reduces the dip at the cen-
ter of the bubble as it has been noted already in Ref. [21].
This is caused by the increasing occupancy of the previ-
ously empty 2s1/2 proton state, as shown in Table V. As
we have seen, this reduction of the bubble leads to an
increase of the p-splittings by almost 0.1 MeV. Together
with the previous discussion about 36S the relative re-
duction of this splitting comes closer to the experimental
value deduced from the major fragments.

The above analysis shows that there is a direct relation
between the size of p-splittings and the occupancy of the
2s1/2 proton state. In order to elaborate this e↵ect in
more detail we carry out RHB-calculations with varying
pairing strength by gradually increasing the scaling factor
in the TMR-force. As discussed this leads on one side
to a reduction of the corresponding occupancy change
�(2s1/2) between 36S and 34Si and on the other side to
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tions for the nuclei 38Ar, 36S, and 34Si
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One pion exchange (OPE)
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periodic table. Serra et al. [56, 57] developed an RHF-
code in oscillator space taking into account only the ex-
change term of the ⇡-meson because the other mesons �,
!, and ⇢ are relatively heavy and the corresponding force
is of short range. Therefore, as discussed before, the ex-
change terms of these mesons can be represented in the
static case to a good approximation by direct terms with
e↵ective coupling constants.

In this work we follow this method to take into account
tensor terms in the relativistic scheme. Basically two
terms are added in the Lagrangian of the system, the
first is the term of the free pion field included in Lm as
given in (3),

L⇡ =
1

2

�
@µ~⇡@

µ~⇡ �m2
⇡

�
~⇡2, (42)

where the mass of the pion is set to its experimental
value m⇡ = 138 MeV. The second term is the pseudo-
vector Yukawa type of force included in Lint as given in
(5)

Lpv = � f⇡
m⇡

 ̄�5�µ@
µ~⇡~⌧ (43)

f2
⇡ = �f2free

⇡ is the strength of the one-pion-exchange
interaction in this model and ffree

⇡ is the experimental
value of pion-nucleon coupling in free space. A factor

p
�

is used as a multiplier to vary the coupling constant of the
pion from zero (�=0) to its free value ffree

⇡ (�=1). This
comprises now a Relativistic Hartree-Fock model and its
parameters have been readjusted for di↵erent values of
�. This has been done following the same procedure that
was used to adjust the parameters of NL3 [27].

Concentrating in this fit only to binding energies and
radii of finite nuclei, it was shown that the optimal fit
was achieved for � = 0. i.e. for vanishing pion-nucleon
interaction. However, a parameter set NL3RHF0.5 with
half the strength of the free pion (�=0.5) describes in
addition to the other data the evolution of single-particle
structure in the tin isotopes measured by the Argonne
group [58] in (↵,t) transfer reactions .

B. Particle-Vibrational Coupling

So far we discussed only mean field methods to de-
scribe single-particle energies. In this description of the
nuclear many-body system the nucleons move indepen-
dently. In the next step we go beyond the mean field
description and include correlations by the method of
particle-vibration coupling (PVC). This is important for
our investigation of single-particle excitations, since the
coupling of the single-particle motion to the low-lying
phonons leads to a fragmentation of the single-particle
spectrum, a feature most prominent in spherical nu-
clei [59]. Even though conventional DFT reproduce fairly
well the gross structure of the SO splitting, the inclusion
of particle-vibration coupling produces a denser spectrum

near the Fermi surface which is in better agreement with
experimental observations.
In fact, it is well known from Landau-Migdal the-

ory [60, 61] that particles in the many-body system can
interact with low-lying surface phonons and form Landau
quasi-particles surrounded by a cloud of excitons. Such
phenomena lead to a fragmentation of the single-particle
energies. In DFT such e↵ects can be taken into account
in the framework of time-dependent density functional
theory (TDDFT) [62]. In contrast to static DFT, which
depends only on the exact static density ⇢0(r), its ba-
sis is the exact time-dependent density ⇢(r,t), which de-
pends on four variables. In static Kohn-Sham theory
the static density ⇢0(r) is mapped onto a static single-
particle potential, the Kohn Sham potential or the static
self-energy ⌃KS, which is easy to diagonalize and whose
local single-particle density is identical to the exact lo-
cal ground state density ⇢0(r). In full analogy to the
static DFT, in the time-dependent case there exists a
time-dependent single-particle field, the time-dependent
self-energy ⌃(r, t) with a time-dependent density identi-
cal to the exact local single-particle density ⇢(r,t) of the
time-dependent many-body problem. This is the Runge-
Gross theorem [63]. The problem is, that we know very
little about this time-dependent self-energy. It is very
complicated because it contains all the memory e↵ects of
the system.
In the case, where the time-dependent motion is of a

small-amplitude character, one can apply linear response
theory and determine the time-dependent self-energy in
a perturbative approach. In Fourier space one ends up
with a self-energy depending on the energy !. Greens-
function techniques and diagrammatic expansions are
used to provide a model for the energy dependent self-
energy ⌃(r,!).
In a first step one starts with the ground state of the

even system determined by static DFT and allows for
small amplitude vibrations around this static solution.
In the adiabatic approximation one assumes that at each
time the self-energy is identical to the static self-energy
calculated with the density ⇢(r,t). This leads to time-
dependent mean field theory and in the limit of small
amplitudes to the well known random phase approxima-
tion (RPA), in the relativistic case to relativistic RPA
(RRPA) and in the case of pairing to quasi-particle RPA
(QRPA). In this way one calculates collective excitations
as, for instance, the surface phonons, which are linear su-
perpositions of ph-excitations, by the diagonalization of
the RPA-matrix. The interaction between these ph-pairs
is given as the second derivative of the energy density
functional with respect to the density

V (r1, r2) =
�2E[⇢]

�⇢(r1)�⇢(r2)
. (44)

One obtains harmonic vibrations |µi with the eigen-
frequencies ⌦µ and the transition densities �⇢µ12 =

hµ|a†2a1|0i.
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experimental observations.
In fact, it is well known from Landau-Migdal the-

ory [60, 61] that particles in the many-body system can
interact with low-lying surface phonons and form Landau
quasi-particles surrounded by a cloud of excitons. Such
phenomena lead to a fragmentation of the single-particle
energies. In DFT such e↵ects can be taken into account
in the framework of time-dependent density functional
theory (TDDFT) [62]. In contrast to static DFT, which
depends only on the exact static density ⇢0(r), its ba-
sis is the exact time-dependent density ⇢(r,t), which de-
pends on four variables. In static Kohn-Sham theory
the static density ⇢0(r) is mapped onto a static single-
particle potential, the Kohn Sham potential or the static
self-energy ⌃KS, which is easy to diagonalize and whose
local single-particle density is identical to the exact lo-
cal ground state density ⇢0(r). In full analogy to the
static DFT, in the time-dependent case there exists a
time-dependent single-particle field, the time-dependent
self-energy ⌃(r, t) with a time-dependent density identi-
cal to the exact local single-particle density ⇢(r,t) of the
time-dependent many-body problem. This is the Runge-
Gross theorem [63]. The problem is, that we know very
little about this time-dependent self-energy. It is very
complicated because it contains all the memory e↵ects of
the system.
In the case, where the time-dependent motion is of a

small-amplitude character, one can apply linear response
theory and determine the time-dependent self-energy in
a perturbative approach. In Fourier space one ends up
with a self-energy depending on the energy !. Greens-
function techniques and diagrammatic expansions are
used to provide a model for the energy dependent self-
energy ⌃(r,!).
In a first step one starts with the ground state of the

even system determined by static DFT and allows for
small amplitude vibrations around this static solution.
In the adiabatic approximation one assumes that at each
time the self-energy is identical to the static self-energy
calculated with the density ⇢(r,t). This leads to time-
dependent mean field theory and in the limit of small
amplitudes to the well known random phase approxima-
tion (RPA), in the relativistic case to relativistic RPA
(RRPA) and in the case of pairing to quasi-particle RPA
(QRPA). In this way one calculates collective excitations
as, for instance, the surface phonons, which are linear su-
perpositions of ph-excitations, by the diagonalization of
the RPA-matrix. The interaction between these ph-pairs
is given as the second derivative of the energy density
functional with respect to the density

V (r1, r2) =
�2E[⇢]

�⇢(r1)�⇢(r2)
. (44)

One obtains harmonic vibrations |µi with the eigen-
frequencies ⌦µ and the transition densities �⇢µ12 =

hµ|a†2a1|0i.

• λ = 0:  Optimal refit incl. OPE of 
NL3

• λ = 0.5: reproduces certain expt data 
of s.p. structure in Sn isotopes

• effect of tensor force bt neutrons and 
protons

determined by spin-orbit alignment
antiparallel spins       attraction 
parallel spins       repulsion   

Pion fitG.A Lalazissis et. al. PRC80, 041301(R)(2009)



3.The effect of the Tensor
Numerical results
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4.The effect of Particle Vibrational coupling-(PVC)

PVC induces energy dependence on eff. potential
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40Ca ! 36S 36S ! 34Si

f p f p

NL3 10% 1% 8% 53%

DD-ME2 11% 8% 8% 40%

DD-PC1 9% 12% 9% 39%

Exp. 20% -20% 2% 43%

36S 34Si �(2S1/2)

NL3 1.83 0.20 1.62

DD-ME2 1.79 0.23 1.57

DD-PC1 1.77 0.30 1.47

Exp. 1.64 0.17 1.56
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4.The effect of Particle Vibrational coupling
Numerical Results
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Conclusions

• In general the observed qualitative picture is reproduced
-Large sudden reduction on 2p splitting going to the ‘bubble’
-No significant change otherwise

• Smaller isospin dependence leads to smaller SO splitting than non-Rel.
• Quantitatively relative reduction larger than expt. 
• Pairing correlations correct for that 
• Tensor effects mainly 1f, showing the pure SO character of the 2p reduction,
   acts opposite than pairing
• PVC improves the qualitative picture. 

- Shifts the 2p orbits in the correct direction
- 2p Relative reduction in 36S       34Si closer to experiment 


