Spin-orbit splittings of neutron states in N = 20 isotones from covariant density functionals (CDF) and their extensions.

<u>K. Karakatsanis¹, G. A. Lalazissis¹, E. Litvinova² and P. Ring³</u>
1) Department of Physics, Aristotle University Thessaloniki, Greece
2) Department of Physics, Western Michigan University, Kalamazoo MI US
3) Physics Department, Technical University Munich, Garching, Germany

Phys. Rev. C 95, 034318 – Published 22 March 2017

4th Workshop on New Aspects and Perspectives in Nuclear Physics (HINPW4) 5-6 May 2017

Motivation: history

Main goal: Examine isospin/density dependence of spin-orbit (SO) in CDFT The spin orbit (SO) force introduced ~ 60 years ago corrects the shell gaps.

Non-Rel. MF

Skyrme: zero range Gogny: finite range Both use 2-body SO term - has to be adjusted

<u>RMF</u>

Based on the Walecka meson exchange model Major advantage SO term naturally from Dirac eq.

Both approaches successful along stability line - similar results

SO difference appear in extreme isospin cases.

Well known example: isotopic shifts in charge radii in Pb

Motivation: the 34Si bubble experiment

Cebr Cratico Get Chaint on isospin dep. of

Study N = 20 isotones 40Ca, 36S, 34Si

Concentrate on neutron states $2p_{1/2} = 2p_{3/2} - 2p_{3/2} = 1f = 1f_{5/2} - 1f_{7/2} + 1f_{7/2}$

<u>*Ist Adv.:*</u> A \approx 40 2*p* splitting around 2MeV and both SO partners accessible

2n Adv.: Occurrence of 'Bubble' in 34Si proton dens.

Theory: [M.Grasso et.al., PRC 79,034318 (2009)]

Expt: [A.Mutschler, O. Sorlin *et.al*. NPHYS3916 (2016)] knock-out reaction 34Si(-1p)33Al Deduce Occupancy 0.17(3) of 2s1/2 only 10% cp to 36S

Since SO $\propto \nabla \rho\,$ see bubble structure influence SO splitting

Motivation: the 34Si bubble experiment

FIG. 3 (color online). Distribution of the *major* fragments of the single particle strength in ⁴¹Ca (top), ³⁷S (middle), and in ³⁵Si (bottom). SF values in ⁴¹Ca are taken from Ref. [29]. The centroid of the $5/2^-$ strength, obtained from a summed SF strength of 0.32, is indicated as $\langle f_{5/2} \rangle$. The SF of the $5/2^-$ components in ³⁷S are taken from [24], while all others SF are derived from the present work with error bars due to statistics and fit distributions.

<u>Proposal:</u> Use the bubble structure to constrain the SO force

Experiment [Burgunder et. al. PRL **112**, 042502 (2014): transfer reaction 34Si(d,p)35Si Measure neutron s.p. energy with

Results:

No change in 2p splitting between 41Ca and 37S Large reduction of 2p between 37S and 35Si No significant change for 1f splitting

<u>Non-Rel. calculations</u> [M. Grasso *et. al.*, Phys. Rev. **C 92**, 054316 (2015).] Using skyrme-SLy5 and Gogny-D1S functionals in the MF-HF level

<u>1.Pure Mean-Field</u> SO term in Mean-Field

RMF nucleons 4-cmpt Dirac spinors ψvirtual mesons $σ, ω, \varrho, (δ)$ Nucleons obey Dirac equation

$$(\boldsymbol{\alpha} \cdot \boldsymbol{p} + \beta(M+S) + V)\psi_i = \varepsilon_i \psi_i,$$

Large S.O. term $V - S \approx 750 \text{ MeV}$

Relativistic fields scalar S and vector V. (Time-rev.) $S = g_{\sigma}\sigma (+g_{\delta}\delta)$ $V = g_{\omega}\omega^{0} + g_{\rho}\tau_{3}\rho_{3}^{0} + eA^{0}$.

In non-Rel. expansion: $V_{S.O.} = \boldsymbol{W} \cdot (\boldsymbol{p} \times \boldsymbol{\sigma})$

WIUI	effective mass	
$\boldsymbol{W} = \frac{1}{2\tilde{M}^2} \boldsymbol{\nabla} (V - S)$	$\tilde{M} = M - \frac{1}{2}(V - S)$	

In the spherical case: $V_{S.O.} = \frac{1}{4\tilde{M}^2} \frac{1}{r} \frac{d(V-S)}{dr} \boldsymbol{\ell} \cdot \boldsymbol{s}$

Under approximation-zero range limit $W_{\tau} = W_1 \nabla \rho_{\tau} + W_2 \nabla \rho_{\tau' \neq \tau}$

RMF very small isospin dep.	Non-Rel. strong isospin dep.
$\frac{W_1}{W_2} \approx 1 + 2\frac{C_{\rho} (+C_{\delta})}{C_{\omega} + C_{\sigma}} \approx 1$	$\frac{W_1}{W_2} = 2.$
$C_i = g_i^2/m_i^2$ $(i = \sigma, \omega, \delta, \rho)$	

<u>1.Pure Mean-Field</u> SO term in Mean-Field

P.-G. Reinhard, H. Flocard/Nuclear Physics A 584 (1995) 467-488

<u>1.Pure Mean-Field</u> Numerical results

2.The effect of pairing RHB framework

Pairing correlation in proton channel of 38Ar, 36S and 34Si Generalised Hartree-Bogolyubov framework of quasiparticles

$$\begin{pmatrix} \hat{h} - m - \lambda & \hat{\Delta} \\ -\hat{\Delta}^* & -\hat{h} + m + \lambda \end{pmatrix} \begin{pmatrix} U_k(\boldsymbol{r}) \\ V_k(\boldsymbol{r}) \end{pmatrix} = E_k \begin{pmatrix} U_k(\boldsymbol{r}) \\ V_k(\boldsymbol{r}) \end{pmatrix}$$

Single particle energies obtained in canonical basis RHB equivalent to RMF + BCS

$$v_{\mu}^{2} = \frac{1}{2} \left[1 - \frac{\varepsilon_{\mu} - \lambda}{\sqrt{(\varepsilon_{\mu} - \lambda)^{2} + \Delta_{\mu}^{2}}} \right]$$

Use TMR pairing force - equivalent to Gogny finite range - avoid cutoff

Pairing strength adjusted to OES

	³⁸ Ar	^{36}S	³⁴ Si
$\Delta_C^{(3)}({ m MeV})$	0.93	0.45	1.95

2.The effect of pairing Proton densities

- Occupancy of 2*s1*/2: decreased in 36S increased in 34Si
- Larger surface diffusion
- Smoothening of the Bubble structure

The inclusion of pairing

- In 38Ar and 36S increases f and reduces p splitting
- In 34Si reduces f and increases p, due to smaller central depletion

<u>Connection bt relative *p* reduction and</u> $\Delta(2s_{1/2})$

- Stronger pairing, smaller occupancy change, smoothening of 'bubble' -> Smaller relative p reduction 36S -> 34Si

3. The effect of the Tensor One pion exchange (OPE)

0.9

 $1f_{5/2}$

34

0.8

<u>3. The effect of the Tensor</u> Numerical results

<u>4. The effect of Particle Vibrational coupling-(PVC)</u>

1st step static DFT 2nd step collective vibrations PVC induces energy dependence on eff. potential

Single particle strength, sum rule: $\sum S_k^{\nu} = 1$

<u>4. The effect of Particle Vibrational coupling</u> Numerical Results

Direct comparison with expt. major fragments

No big effect on 1f splitting

2*p*-orbits shifted downwards more for orbits close to fermi increase in the size

rel. reduction closer to expt.

Conclusions

- In general the observed qualitative picture is reproduced
 - -Large sudden reduction on 2p splitting going to the 'bubble'
 - -No significant change otherwise
- Smaller isospin dependence leads to smaller SO splitting than non-Rel.
- Quantitatively relative reduction larger than expt.
- Pairing correlations correct for that
- Tensor effects mainly 1*f*, showing the pure SO character of the 2*p* reduction, acts opposite than pairing
- PVC improves the qualitative picture.
 - Shifts the 2*p* orbits in the correct direction
 - 2p Relative reduction in 36S \rightarrow 34Si closer to experiment