



## <sup>210</sup>Pb and <sup>7</sup>Be concentrations in moss samples from the region of Northern Greece

#### Betsou Chrysoula<sup>1</sup>

Tsakiri E<sup>2</sup>, J. Hansman<sup>3</sup>, M. Krmar<sup>3</sup>, A. Ioannidou<sup>1</sup>

<sup>1</sup>Aristotle University of Thessaloniki, Greece, Physics Department Nuclear Physics and Elementary Particle Physics Division

<sup>2</sup>Aristotle University of Thessaloniki, Greece, Biology Department, Division of Botany

<sup>3</sup>University of Novi Sad, Serbia, Faculty of Science, Physics Department

#### Mosses

-Ideal bioindicators -Simple sample collection -High sampling density -Economic sampling medium





Lithotopos, Serres



Fteri, Pieria



Neo Petritsi, Serres

Collection

s u b s t r a t e s



Ano Poroia, Serres



chbetsou@physics.auth.gr Hypnum cupressiforme Hedwannina, 5-6 May 2017

# Samples of the moss *Hypnum cupressiforme* Hedw. were collected from 95 sampling sites in Northern

Greece, covering the Regions of West, Central and East Macedonia and Thrace, with sampling taking place from mid July till end of September 2016.

#### Study area - 95 collections sites in Northern Greece



chbetsou@physics.auth.gr

## Environmental radioactivity



<sup>7</sup>Be and <sup>210</sup>Pb are powerful tools for studying environmental processes, residence time of aerosols in the atmosphere, deposition velocity etc

chbetsou@physics.auth.gr

## <sup>7</sup>Be cosmogenic radionuclide

-formed in the upper troposphere and lower stratosphere by spallation reactions of cosmic rays with nitrogen and oxygen of atmosphere.

-Once it is formed, it is attached to aerosol particles and their fate is becoming the fate of their carrier aerosol particles.

- is deposited on the ground surface mainly through wet deposition which accounts more than 90% from total wet and dry deposition.

- <sup>7</sup>Be production rate depends on latitude, altitude and 11-year solar cycle.

- For a specific region its concentrations show a seasonal variation with maximum during warm summer months and minimum during winter period.

-half life ~53.3 days

### <sup>210</sup>Pb isotope

-widely found in the terrestrial environment

-final long-lived radionuclide of the <sup>238</sup>U chain

-produced by the decay of  $^{222}Rn$  which enters in the atmosphere from the soil ( $^{210}Pb_{unsupported}$ )

-it is also released from *industrial processes* such as the sintering of ores containing some amount of <sup>238</sup>U, the *burning of coal* or the production and use of agricultural *fertilizers* 

- Half life ~ 22 years

#### <sup>238</sup>U series



chbetsou@physics.auth.gr

#### <sup>210</sup>Pb supported & <sup>210</sup>Pb unsupported



- by 222Rn decay in water column

chbetsou@physics.auth.gr

## <sup>210</sup>Pb unsupported



#### Sample preparation for gamma-spectrometry

After sampling, mosses were dried at  $105^{\circ}$  C for 24 hours and all the impurities were removed manually.

After the preparation, mosses were put in two cylindrical plastic containers, diameter 67 mm and height 31 mm. A mass of 11-24gr is contained in each container, so ~22-48 gr total per sample.



For detector efficiency: -IAEA 372 (grass) -IAEA 330 (spinach) -IAEA 447 (moss-soil)

High resolution gamma spectrometry measurements can be carried out with the moss technique, without any chemical treatment of the samples.

#### Gamma spectrometry

All samples were measured in a low-background HPGe detector with relative efficiency 36%, shielded by 16cm of lead and 1.5mm inner Cu shield was used.

Next measurements were carried out using extended range HPGe detector equipped by Be window to get evidence about <sup>210</sup>Pb concentration. Statistical uncertainty of 46.5 keV <sup>210</sup>Pb line was up to 5%, too.



#### Gamma spectrometry





#### 95 moss samples



chbetsou@physics.auth.gr

Gamma radionuclides

#### <sup>210</sup>Pb, <sup>7</sup>Be, <sup>137</sup>Cs, <sup>40</sup>K

| 1 | <sup>137</sup> Cs, | t <sub>1/2</sub> = 30.04 years            | (661.65 keV)  |
|---|--------------------|-------------------------------------------|---------------|
|   | <sup>40</sup> K,   | † <sub>1/2</sub> = 1.25x10 <sup>9</sup> y | (1460.75 keV) |
|   | <sup>7</sup> Be,   | † <sub>1/2</sub> = 53.3 days              | (475.5 keV)   |
|   | <sup>210</sup> Pb, | † <sub>1/2</sub> = 22.23 y                | (46.5 keV)    |

Sampling July-Sept 2016 ~1 half-life of <sup>137</sup>Cs after the Chernobyl accident 1986

chbetsou@physics.auth.gr

## <sup>7</sup>Be activity concentrations



collected from different surface type

|      | <sup>7</sup> Be (Bq kg <sup>-1</sup> ) |  |
|------|----------------------------------------|--|
| Max  | 1280                                   |  |
| Min  | 69                                     |  |
| mean | 392                                    |  |



no variances in concentrations due to different altitudes

#### <sup>7</sup>Be activity concentrations in mosses July-Sept 2016



chbetsou@physics.auth.gr

## <sup>210</sup>Pb activity concentrations



|      | <sup>210</sup> Pb (Bq kg <sup>-1</sup> ) |  |
|------|------------------------------------------|--|
| Max  | 2049                                     |  |
| Min  | 147                                      |  |
| mean | 830                                      |  |

**s**urface = 0.87roots

#### <sup>210</sup>Pb activity concentrations in mosses July-Sept 2016



chbetsou@physics.auth.gr

# Concentrations of <sup>7</sup>Be & <sup>210</sup>Pb in other countries

- In October 2005 in Serbia, the concentration of <sup>7</sup>Be ranged between 95-360 Bq kg<sup>-1</sup> with mean value of 195 Bq kg<sup>-1</sup> (Krmar,2007)
- During the summer of 2008 in Serbia the mean value of <sup>7</sup>Be was measured at 314 Bq kg<sup>-1</sup> and of <sup>210</sup>Pb at 695 Bq kg<sup>-1</sup> (Krmar,2013)
- In Slovakia during the summer of 2006 and 2007 the concentration of <sup>210</sup>Pb ranged between 330-1521 Bq kg<sup>-1</sup> in Belarus ranged between 163-575 Bq kg<sup>-1</sup> (Yu.V.Aleksiayenak, 2013)

Our results:

<sup>7</sup>Be: 69-1280 Bq kg<sup>-1</sup> (mean: 392) <sup>210</sup>Pb: 147-2049 Bq kg<sup>-1</sup> (mean: 830)

## Conclusions

- <sup>210</sup>Pb, <sup>7</sup>Be activity concentrations determined in 95 moss samples collected from Northern Greece
- Small discrepancies exist between samples collected from different surface matrix (rocks, roots etc) in <sup>7</sup>Be concentrations in contrast to <sup>210</sup>Pb concentration
- no variances were observed in <sup>7</sup>Be and <sup>210</sup>Pb concentrations due to different altitudes
- usually there are seasonal variances in <sup>7</sup>Be concentrations, but our sampling occurred only in summer of 2016
- the activity of <sup>210</sup>Pb in mosses can vary from region to region due to the different soil structure
- the majority of <sup>210</sup>Pb in mosses has arrived from aerosol deposition (e.g. dust that contains <sup>238</sup>U daughters)
- No correlation was found between <sup>7</sup>Be and <sup>210</sup>Pb

## Next steps:

- Determination of heavy metals concentrations in mosses
- Study of the transboundary transport of heavy metals
- Study of the influence of meteorological conditions on the deposition of airborne radionuclides
- Transfer factor of <sup>7</sup>Be and <sup>210</sup>Pb from the atmosphere to the mosses
- Correlation between the <sup>210</sup>Pb,<sup>137</sup>Cs, <sup>40</sup>K in soil and mosses

