Neutron-rich rare isotope production with stable and radioactive beams in the mass range A ~ 40-60 at 15 MeV/nucleon

<u>A. Papageorgiou¹</u>, G.A. Soulotis¹, M. Veselsky², A. Bonasera^{3,4}

¹Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens ²Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia ³Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA ⁴Laboratori Nazionali del Sud, INFN, via Santa Sofia 62, I-95123 Catania, Italy

<u>4th Workshop on New Aspects and Perspectives in Nuclear Physics (HINPW4)</u> <u>5-6 May 2017</u>

Overview:

Introduction

- Explanation of the models
- > Comparison of our calculations with experimental results
- Summary and conclusions

The Nuclear Landscape

- ~ 3300 short-lived (radioactive) nuclei synthesized to date
- Iarge region of neutron-rich nuclei is still unexplored (~4000 nuclei)

www.fynu.ucl.ac.be

Rare isotope production study: Why?

Investigation of very neutron nuclei offers: •Understanding of the **nuclear structure** with increasing N/Z

•Insight in nucleosynthesis processes (i.e. rapid neutron capture process, **r-process**)

•Reactions induced by n-rich nuclei: isospin dependence N-N interaction, equation of state of asymmetric nuclear matter.

Production of very neutron-rich nuclides is a central issue in current and future rare isotope beam facilities (GSI, Ganil, NSCL/FRIB, TRIUMF, RISP/Korea etc).

Peripheral Collisions, Deep Inelastic Transfer (DIT)*

DIT : Phenomenological model (Monte Carlo implementation)

- Formation of a di-nuclear configuration
- Exchange of nucleons through a "window" formed by the superimposition of the nuclear potentials in the neck region
- > Dissipation of Kinetic energy into internal degrees of freedom

*DIT : L. Tassan-Got, C. Stephan, Nucl. Phys. A 524, 121 (1991) DIT(modified): M. Veselsky, G.A. Souliotis, Nucl. Phys. A 765, 252 (2006)

Microscopic Calculations: Constrained Molecular Dynamics (CoMD)*

CoMD: Quantum Molecular Dynamics model (Semiclassical)

- Nucleons are considered as Gaussian wavepackets
- N-N effective interaction (Skyrme-type with K=200 MeV/fm³)
- Several forms of N-N symmetry potential V_{sym} (ρ)
- > Pauli principle imposed via a phase-space constraint
- Fragment recognition algorithm (Rmin = 3.0 fm)
- Monte Carlo implementation

*M. Papa, A. Bonasera et al., Phys. Rev. C 64, 024612 (2001)

Nuclear De-excitation Mechanisms

Comparison of data: ⁴⁰Ar (15 MeV/nucleon) + ^{64,58}Ni, ²⁷Al

- ⁴⁰Ar+ ⁶⁴Ni (15 MeV/u)*
- ⁴⁰Ar+ ⁵⁸Ni (15 MeV/u)*
- ⁴⁰Ar+ ²⁷Al (15 MeV/u)*

*G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

Data from Texas A&M University

Comparison: Data, Calculations: ⁴⁰Ar (15 MeV/nucleon) + ⁶⁴Ni

*G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

DIT : Deep inelastic transfers L. Tassan-Got and C. Stefan, Nucl. Phys A 524, 121 (1991)

- **CoMD:** Constrained Molecular Dynamics: M.Papa et. al., Phys. Rev. C 64, 024612 (2001)
- SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, 044610 (2002); Nucl. Phys. A 507, 649 (1990)

Calculations: ⁴⁰Ar(15 MeV/u) + ⁶⁴Ni, ⁴⁸Ca

⁴⁰Ar + ⁶⁴Ni (15 MeV/u)* data
DIT/SMM ⁴⁰Ar + ⁶⁴Ni (N/Z = 1.28)
DIT/SMM ⁴⁰Ar + ⁴⁸Ca (N/Z = 1.40)

*G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

DIT : Deep inelastic transfers L. Tassan-Got and C. Stefan, Nucl. Phys A 524, 121 (1991)

Calculations: ⁴⁰ Ar(15 MeV/nucleon) + ²³⁸U

- ⁴⁰Ar + ⁶⁴Ni (15 MeV/u)*
- o ⁴⁰Ar + ¹⁸¹Ta (90 MeV/u)**

- DIT/SMM 40 Ar + 64 Ni (N/Z = 1.28)

----- DIT/SMM ⁴⁰Ar + ²³⁸U (N/Z = 1.59)

*G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

**Projectile Frgmentation reactions and Production of Nuclei near the neutron drip-line, Masahiro Notani, University of Tokyo

DIT : Deep inelastic transfers L. Tassan-Got and C. Stefan, Nucl. Phys A 524, 121 (1991)

Calculations: ⁴⁸Ca(15 MeV/nucleon) + ⁶⁴Ni, ²³⁸U, ²⁰⁸Pb

⁴⁸Ca + ¹⁸¹Ta (140 MeV/u)*
DIT/SMM ⁴⁸Ca + ⁶⁴Ni (N/Z = 1.28)
DIT/SMM ⁴⁸Ca + ²³⁸U (N/Z = 1.59)
DIT/SMM ⁴⁸Ca+ ²⁰⁸Pb (N/Z = 1.54)

* M. Mocko et al., Phys. Rev. C 74, 054612 (2006)

DIT : Deep inelastic transfers L. Tassan-Got and C. Stefan, Nucl. Phys A 524, 121 (1991)

Comparison of RIB ⁴⁶Ar with stable beam ⁴⁰Ar

.

• ⁴⁰Ar + ⁶⁴Ni (15 MeV/u)*

..... DIT/SMM ⁴⁶Ar + ⁶⁴Ni

DIT : Deep inelastic transfers L. Tassan-Got and C. Stefan, Nucl. Phys A 524, 121 (1991)

*G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

Comparison of RIB ⁵⁴Ca with stable beam ⁴⁸Ca

___ DIT/SMM ⁴⁸Ca + ⁶⁴Ni

..... DIT/SMM ⁵⁴Ca + ⁶⁴Ni

DIT : Deep inelastic transfers L. Tassan-Got and C. Stefan, Nucl. Phys A 524, 121 (1991)

Calculations with RIB ⁵⁴Ca(15 MeV/nucleon) + ⁶⁴Ni, ²³⁸U

- DIT/SMM ${}^{54}Ca + {}^{64}Ni (N/Z = 1.28)$

..... DIT/SMM ⁵⁴Ca + ²³⁸U (N/Z= 1.59)

Cross Sections and RIB Rate estimates

⁴⁸Ca (15 MeV/nucleon) + ²³⁸U

Rare isotope	Reaction Channel	Cross Section (mb)	Rates (s ⁻¹)
⁵⁴ Ca	- 0p + 6n	0,03	4.6 × 10 ³
⁴⁶ Ar	- 2p - 0n	2.88	4.4×10^{5}
⁵⁵ Sc	+1p + 6n	0.051	7.8 × 10 ³
⁵² K	- 1p + 5n	0.05	17.6 × 10 ³

⁴⁶Ar (15 MeV/nucleon) + ²³⁸U

Rare isotope	Reaction Channel	Cross Section (mb)	Rates (s⁻¹)
⁵¹ Ar	- 0p + 5n	0,064	1.4×10^{-3} (5 hour $^{-1}$)
⁵² Ar	- 0p - 06n	0.008	$1.8 imes 10^{-4}$ (15 day $^{-1}$)
⁴⁸ Cl	-1p + 3n	0.24	5.4 $ imes$ 10 ⁻³ (19 hour ⁻¹)
⁴⁹ Cl	- 1p + 4n	0.06	1.3×10^{-3} (5 hour ⁻¹)

- Beam of ⁴⁸Ca with intensity 500 pnA (3 x 10¹² particles/s)
- Beams of ⁴⁶Ar and ⁵⁴Ca with intensities taken from the rates of the reaction ⁴⁸Ca (15 MeV/nucleon) + ²³⁸U
- > ²³⁸U target with a thickness of 20 mg/cm²

⁵⁴Ca (15 MeV/nucleon) + ²³⁸U

Rare isotope	Reaction Channel	Cross Section (mb)	Rates (s ⁻¹)
⁵⁷ Ca	- 0p + 3n	0.59	$1.4\times10^{\text{-4}}$ ($12~\text{day}^{\text{-1}}$)
⁵⁸ Ca	-0p +4n	016	$3.75\times10^{\text{-5}}$ (3 day 1)
⁵⁹ Ca	-op +5n	0.04	$9.75 imes 10^{-6}$ (6 week ⁻¹)
⁶⁰ Ca	- 0p + 6n	0.008	$1.9 imes 10^{-6}$ (1 week ⁻¹)
⁵⁴ K	-1p + 1n	0.58	$1.4\times10^{\text{-4}}$ ($12~\text{day}^{\text{-1}}$)
⁵⁷ K	- 1p + 4n	0.04	$9.4 imes10^{-6}$ (6 week $^{-1}$)

Summary and Conclusions:

- Systematic study of production of neutron-rich rare isotopes in peripheral reactions below the Fermi energy in mass range A ~40-60
- Satisfactory agreement with available experimental results
- Predictions of RIB rates using the calculated cross sections
- > Predictions of extremely neutron rich isotopes towards ⁶⁰Ca

Plans for future work:

- Further theoretical investigation with CoMD, DIT, SMM
- Experimental work with ⁷⁰Zn stable beam at 15 MeV/nucleon at LNS Catania with the MAGNEX spectrometer

Acknowledgements

Special thanks to:

A. Botvina, FIAS, Frankfurt, Germany (SMM code)

THANK YOU !