Production of Neutron-Rich Rare Isotopes toward the astrophysical r-proceess

Georgios A. Souliotis

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece

> HINPw4 Ioannina, 4-5 May 2017

Outline

- Introduction
- Chart of Nuclides
- Nucleosynthesis processes: focus on trans-Fe elements
- Research Results and Directions
- Rare Isotope Production
- Nuclear Fission Spallation
- Summary-Conclusions

The Nuclear Landscape and the r-process path

Rapid Neutron capture process (r-process)

⁵⁹Fe $t_{1/2} = 44.5 \text{ d},$ ⁶⁸Fe $t_{1/2} = 0.019 \text{ s},$ ⁷¹Co $t_{1/2} = 0.09 \text{ s},$ ⁷⁶Ni $t_{1/2} = 0.24 \text{ s}$

* e.g. C.A. Bertulani, T. Kajino, Prog. Nucl. Part. Physics 89, 56 (2016)

* e.g. C.A. Bertulani, T. Kajino, Prog. Nucl. Part. Physics 89, 56 (2016)

Production Methods of Rare Isotope Beams^[1]

*http://www.sc.doe.gov/np/nsac/nsac.html

RIB facility @ S. KOREA: Raon

Raon: 라온 meaning happy/joyful in Korean **Raon:** Heavy ion accelerator planned to be constructed by 2021 in South Korea

RISP (Rare Isotope Science Project): Research facility of the **IBS** (Institute for Basic Science), Daejeon, South Korea

https://www.ibs.re.kr/eng/sub01_05.do

FUTURE ACCELERATOR COMPLEX IN RAON

Innovative feature: ISOL + IF facilities (ideally coupled)

Characteristics of Nuclear Reactions: Energy Regimes

• Low Energy:	< 10	MeV/u	(u < 0.15 c)
• Fermi Energy:	10 - 50 I	MeV/u	(u = 0.15 - 0.3 c)
Medium Energy:	50 -200	MeV/u	(u = 0.3 - 0.6 c)
• High Energy:	> 200	MeV/u	(u > 0.6 c)

Collisions between Heavy Ions at Fermi Energies (E/A < 50MeV)

Microscopic Calculations: Constrained Molecular Dynamics Model (CoMD)

CoMD: Quantum Molecular Dynamics (Semi classical)

- Nucleons considered as gaussian wavepackets
- Solution of the classical Hamilton's equations for the centroids
- Phenomenological N-N interaction (Skyrme-type)
- Symmetry potential depending on the nuclear density
- Surface potential (can be isospin dependent)
- Emulation of Pauli principle through appropriate restriction in phase space (phase space constraint)
- Recognition of cluster (fragment) formation (RN-N = 2.4 fm)
- Simulation of a large number of events (Monte Carlo approach)
- Continue evolution for 300-500 fm/c.
- Obtain properties of primary fragments

Microscopic Calculations: Constrained Molecular Dynamics (CoMD)*

*M. Papa, A. Bonasera et al., Phys. Rev. C 64, 024612 (2001)

CoMD Calculations: ⁸⁶Kr (15 MeV/nucleon) + ¹²⁴Sn

CoMD: Constraint Molecular Dynamics; M. Papa, A. Bonasera, Phys. Rev. C 64, 024612 (2001)

Cyclotron Institute at Texas A&M University

Comparison: Data, Calculations: ⁸⁶Kr (15 MeV/nucleon) + ⁶⁴Ni

* P.N. Fountas, G.A. Souliotis et al., Phys. Rev C 90, 064613 (2014)

• ⁸⁶Kr + ⁶⁴Ni (15 MeV/u)*

- CoMD/SMM

----- CoMD/GEMINI

*data: G.A. Souliotis et al., Phys. Rev. C 84, 064607 (2011)

- **CoMD:** Constrained Molecular Dynamics: M.Papa et. al., Phys. Rev. C 64, 024612 (2001)
- GEMINI: Binary Decay Code: R. Charity, Nucl. Phys. A 483, 391 (1988)
- SMM: Statistical Multifragmentation Model: A. Botvina et al., Phys. Rev. C 65, 044610 (2002); Nucl. Phys. A 507, 649 (1990)

⁹²Kr RNB Cross Sections and Rate estimates

Rare isotope	Reaction Channel	Cross Section (mb)	Rates (s⁻¹)
⁹³ Kr	- 0p + 1n	18.8	1.1×10^{4}
⁹⁴ Kr	- 0p + 2n	2.3	1.3×10^{3}
⁹⁵ Kr	- 0p + 3n	0.63	3.8×10^{2}
⁹⁶ Kr	- 0p + 4n	0.20	1.2×10^{2}
⁹² Br	- 1p + 1n	4.5	2.7 × 10 ³
⁹³ Br	- 1p + 2n	0.75	4.5×10^{2}
⁹⁴ Br	- 1p + 3n	0.078	47
⁹⁵ Br	- 1p + 4n	0.039	23
⁹⁶ Br	- 1p + 5n	0.008	5
⁹⁰ Se	- 2p + 0n	2.70	1.6×10^{3}
⁹¹ Se	- 2p + 1n	0.60	3.5×10^{2}
⁹² Se	- 2p + 2n	0.12	70
⁹³ Se	- 2p + 3n	0.039	23

- Cross sections and rate estimates of neutron-rich isotopes from ⁹²Kr (15 MeV/nucleon) + ⁶⁴Ni
- Beam of ⁹²Kr with intensity 0.5 pnA (3 x 10⁹ particles/s)
- ⁶⁴Ni target with a thickness of 20 mg/cm²

* P.N. Fountas, G.A. Souliotis, M. Veselsky, et al, Phys. Rev. C 90, 064613 (2014)

Example of nuclide production in DIC with RIBs:

Rate estimates: ⁹²Kr from RAON at 0.5pnA (~3x10⁹pps), ⁶⁴Ni (20mg/cm²):

1mb => 600 pps

* P.N. Fountas, G.A. Souliotis et al, Phys. Rev. C 90, 064613 (2014)

Experimental setup: The MAGNEX spectrometer

$$\theta_{\text{MAGNEX}} = 9^{\circ}$$
 $\Delta \theta = 4^{\circ} - 16^{\circ}$

Experimental setup: MAGNEX target chamber

Calculations: DIT/SMM: ⁷⁰Zn (15 MeV/nucleon) + ⁶⁴Ni, ²⁰⁸Pb

Mass-resolved angular distributions

For this test run : one angle setting $\theta_{MAGNEX} = 9^{\circ}$ $\Delta \theta = 4^{\circ} - 16^{\circ}$

Preliminary DIT/SMM Calculations: ⁷⁰Zn (15 MeV/nucleon) + ⁶⁴Ni

Mass distributions of near-projectile isotopes

Mass Number A

Expected rate: 1µb => ~ 4 cpm

 Experimental study of peripheral reactions at energy ~10-30 MeV/nucleon Beams: ⁴⁸Ca, ⁷⁰Zn, ⁸²Se (targets: ⁶⁴Ni, ¹²⁴Sn, ²⁰⁸Pb, ²³⁸U, look ~ θ_{gr})

Projectile fission of ²³⁸U (15 MeV/nucleon)

Excitation-energy reconstruction and study (10-30 MeV/nucleon data)

Experience for experimental studies using neutron-rich RIBs (FRIBS/LNS, FRIB/MSU, RISP/Korea)

Access the neutron-drip line near Z~26-28 with RIBs of Zn, Ni

Nuclear Fission Studies with CoMD

p (30 MeV) + ²³⁵U

- lur235_sur0_t10k_animate.dist_out' using 5:6:(ev(\$1)*te(\$2)*nn(\$4)* \$7) •
- lur235_sur0_t10k_animate.dist_out' using 5:6:(ev(\$1)*te(\$2)*pp(\$4)* \$7) •

*N. Vonta, G.A. Souliotis, et al., Phys. Rev C 87, 014001 (2015).

Comparison between Theoretical and Experimental Results: p (30 MeV) + ²³⁵U

Red line: standard V_{sym} ~ ρ Blue line: soft V_{sym} ~ $\rho^{1/2}$

Grey points: experimental data: S.I. Mulgin et al., Nucl. Phys. A 824, 1 (2009)

*N. Vonta, G.A. Souliotis, et al., Phys. Rev C 87, 014001 (2015).

Fission Calculations: ²³⁸U (20 MeV/nucleon) + ⁶⁴Ni

Production cross sections of neutron-rich nuclides

*N. Vonta, G.A. Souliotis, *et al., Phys. Rev C* (Dec.2016).

Overview of spallation and its applications

- Astrophysics (reactions induced by cosmic rays in interstellar medium)
- Accelerator-driven systems (ADS) ("Energy amplification")
- Transmutation of nuclear waste
- Sources (Facilities) of spallation neutrons
- Production of rare isotopes (ISOL facilities)

Spallation reaction mechanism

Spallation: p(500MeV) +²⁰⁸Pb

*A. Assimakopoulou, G.A. Souliotis, *A. Bonasera, M. Veselsky, in preparation* (Aug. 2016).

Comparison between theoretical results and experimental data: $p(1000 \text{ MeV}) + {}^{208}Pb$

Exp. Data: T. Enqvist et al., Nucl. Phys. A 686, 481 (2001)

*A. Assimakopoulou, G.A. Souliotis, et al.,

Fission Cross Section of ²⁰⁸Pb

□CoMD calculations: Red line: standard □ Blue line: soft

Black points: experimental data

1)J. L. Rodriguez et al., Phys. Rev. C 90, 064606 (2014)

2)T. Enqvist et al., Nucl. Phys. A 686, 481-524 (2001)

3)B. Fernandez et al., Nucl. Phys. A 747, 227-267 (2005) 4)K. -H. Schmidt et al., Phys. Rev. C 87, 034601 (2013)

5) A. V. Prokofiev, Nucl. Instr. Meth. A 463 557-575 (2001)

Fission cross section/residue cross section

1)T. Enqvist et al., Nucl. Phys. A 686, 481-524 (2001)

2)B. Fernandez-Dominguez et al., Nucl. Phys. A 747, 227-267 (2005)

3)M. Bernas et al., Nucl. Phys. A 725, 213-253 (2003) 5)F. Rejmund et al., Nucl. Phys. A 683 540-565 (2001) 4)J. Benlliure, P. Armbruster et al., Nucl. Phys. A 700 469-491 (2002)

Summary

- Overview of Nuclear Studies
- Nuclear Chart-Nuclear Stability
- Overview of Nucleosynthesis. Focus on r-process
- Research Results and Directions
- Rare Isotope Production
- Nuclear Multifragmentation: hot nuclei
- Nuclear Fission, Spallation

Acknowledgements

Special thanks to:

Dr. Aldo Bonasera, TAMU and Catania Dr. Martin Veselsky, IoP, SAS, Bratislava, Slovakia Dr. Alex Botvina, GSI

TAMU Cyclotron Institute Collaborators

Prof. Sherry Yennello, CI Director Dr. Brian Roeder

<u>RISP/IBS Collaborators, Korea</u> Dr. Y.K. Kwon, Low Energy Group Leader Dr. K. Tshoo

Financial Support National and Kapodistrian University of Athens, Special Research Funds Office (ELKE)

