

AMIAS: A Model Independent Analysis Scheme From Hadronics to Medical Imaging

Efstathios Stiliaris, C.N. Papanicolas

Section of Nuclear and Particle Physics, Department of Physics National & Kapodistrian University of Athens & The Cyprus Institute, Nicosia, Cyprus

4th Workshop on New Aspects and Perspectives in Nuclear Physics (HINPW4) 5-6 May 2017 Karolos Papoulias Conference Center, University of Ioannina, Greece

H(e,e'p) π^0 Measurements at the $\Delta(1232)$ Resonance

N.F. Sparveris et al. PRL 94 (2005) 022003

Bates-Mainz Data ($Q^2=0.127$ (GeV/c)², W=1232 MeV)

How to extract model independent amplitudes from experimental data?

The signal for deformation in the $\gamma^* N \rightarrow \Delta$ transition

Spherical \Rightarrow M1 Deformed \Rightarrow M1, E2, C2 Deformation signal $\begin{cases} CMR = Re \left(\frac{S_{1+}^{3/2}}{M_{1+}^{3/2}} \right) \\ EMR = Re \left(\frac{E_{1+}^{3/2}}{M_{1+}^{3/2}} \right) \end{cases}$

Out of Plane Spectroscopy

$$R_T + \epsilon_L R_L = \frac{\sigma_0 + \sigma_{\pi/2} + \sigma_\pi + \sigma_{3\pi/2}}{4K}$$

$$\sigma = \mathcal{J}_{\Omega} \Gamma_{v} \frac{p_{\rm cm}}{k_{\rm cm}} \left(R_{T} + \epsilon_{L} R_{L} + \epsilon R_{TT} \cos 2\phi_{X\gamma} \right)$$

$$- v_{LT}R_{LT}\cos\phi_{X\gamma} - h v'_{LT}R'_{LT}\sin\phi_{X\gamma})$$

$$R_{TT} = \frac{\sigma_0 - \sigma_{\pi/2} + \sigma_\pi - \sigma_{3\pi/2}}{4K\epsilon}$$
$$R_{LT} = \frac{\sigma_\pi - \sigma_0}{2Kv_{LT}}$$

$$R'_{LT} = \frac{\sigma_{3\pi/2} - \sigma_{\pi/2}}{2Khv'_{LT}}$$

Out of Plane Spectroscopy

$$\sigma = J_{\Omega} \Gamma_{v} \frac{p_{cm}}{k_{cm}} \left(R_{T} + \epsilon_{L} R_{L} + \epsilon R_{TT} \cos 2\phi_{X\gamma} - v_{LT} R_{LT} \cos \phi_{X\gamma} - h v'_{LT} R'_{LT} \sin \phi_{X\gamma} \right)$$

$$R_T + \epsilon_L R_L = \frac{\sigma_{\pi/4} + \sigma_{5\pi/4}}{2K}$$
$$R_{LT} = \frac{\sigma_{3\pi/4} - \sigma_{\pi/4}}{\sqrt{2}Kv_{LT}}$$
$$R'_{LT} = \frac{\sigma_{5\pi/4} - \sigma_{3\pi/4}}{\sqrt{2}Khv'_{LT}}$$

OOPS Spectrometer MIT-Bates Linear Accelerator

A1 Spectrometer MAMI – Mainz, Germany

Proposed and designed by C.N. Papanicolas

alignment precision: 1 mm, 1 mrad

Model Errors

- Extracted amplitudes and their ratios (EMR, CMR) are characterized by statistical, systematic and model error.
- Model error often dominates.
- So far we have only guestimates, at best!

A Model Independent Analysis Scheme AMIAS

Based on statistical concepts and Monte Carlo techniques

- E. Stiliaris and C.N. Papanicolas: "Multipole Extraction: A Novel, Model Independent Method", AIP Vol. **904** (2007) 257-268.
- C.N. Papanicolas and E. Stiliaris: "A Novel Method of Data Analysis for Hadronic Physics", http://arxiv.org/abs/1205.6505v1.

A Simple AMIAS Example: Fitting a Straight Line

•Theory: $y = A_0 + A_1 x$ {Aµ}

 $\{A\mu\} = (A0, A1)$

How to analyze them with AMIAS?

A Simple AMIAS Example: Fitting a Straight Line

Α1

A1*P

Multipole Expansion

$$F_{1} (W, z) \approx \sum_{n=1}^{\infty} \left| \left[1M_{1} + (W) + E_{1} + (W) \right] P_{1+1}'(z) + \left[(1+1) M_{1-}(W) + E_{1-}(W) \right] P_{1-1}'(z) \right|$$

$$F_{2} (W, z) \approx \sum_{n=1}^{\infty} \left[(1+1) M_{1} + (W) + 1M_{1-}(W) \right] P_{1}'(z),$$

$$F_{3} (W, z) \approx \sum_{n=1}^{\infty} \left[\left[(E_{1} + (W) - M_{1} + (W) \right] P_{1+1}'(z) + \left[E_{1-}(W) + M_{1-}(W) \right] P_{1-1}'(z) \right],$$

$$F_{4} (W, z) \approx \sum_{n=1}^{\infty} \left[M_{1} + (W) - E_{1+}(W) - M_{1-}(W) - E_{1-}(W) \right] P_{1}''(z),$$

$$F_{5} (W, z) \approx \sum_{n=1}^{\infty} \left[(1+1) L_{1} + (W) P_{1+1}'(z) - 1L_{1-}(W) P_{1-1}'(z) \right]$$

$$F_{6} (W, z) \approx \sum_{n=1}^{\infty} \left[1 L_{1-}(W) - (1+1) L_{1} + (W) \right] P_{1}'(z).$$

Chew-Goldberger-Low-Nambu (CGLN) Amplitudes

E. Amaldi, S. Fubini and G. Furlan: *Pion-Electroproduction* (1979) Springer Verlag

$E_{L}+, E_{L}-, M_{L}+, M_{L}-, L_{L}+, L_{L} 0 \le L \le Lcut$

F1, F2, F3, F4, F5, F6 (CGLN)

Response Functions: R_T , R_L , R_{TT} , R_{LT} , ...

Sensitivity on Amplitude A_i

E2+

AMIAS: Sensitivity Analysis

Bates-Mainz Data ($Q^2=0.127$ (GeV/c)², W=1232 MeV)

Extracted Values

Multipole	Extracted Value	Relative Error	MAID-2003	Sato & Lee	DMT
M_{1+}	27.24 ± 0.20	0.73 %	27.464	27.661	27.489
L_{1+}	$0.82 \substack{+0.20 \\ -0.09}$	17.7 %	1.000	0.672	0.986
L_{0+}	2.23 ± 0.41	18.4 %	2.345	1.008	1.994
E_{0+}	3.44 ± 0.70	20.3 %	2.873	2.213	3.206
E_{1+}	$1.16 \substack{+0.32 \\ -0.24}$	24.1 %	1.294	1.288	1.401

Probability Distributions

Correlations

Bates-Mainz Data ($Q^2=0.127$ (GeV/c)², W=1232 MeV)

Mainz W=1232 Photoproduction Data

• MAID07: -2.1

PHYSICAL REVIEW C 75, 025201 (2007)

Recoil polarization measurements for neutral pion electroproduction at $Q^2 = 1 (\text{GeV}/c)^2$ near the Δ resonance

Jlab Hall A Data → Vasileios Hantzikos (UoA)

Spectral decomposition of the hadron propagator \rightarrow QCD Correlators

C. Alexandrou, C.N. Papanicolas and E. Stiliaris: *A novel fitting scheme – Nucleon excited states,* PoS (Lattice 2008) 099

AMIAS has been successfully tested in the determination of hadron excited states in Lattice QCD applied to the nucleon.

PoS (Lattice 2008) 099

AMIAS has been successfully tested in the determination of hadron excited states in Lattice QCD applied to the nucleon.

C. Alexandrou, T. Leontiou, C.N. Papanicolas and E. Stiliaris: *A Novel Analysis for Excited States in Lattice QCD – The Nucleon Case,* Phys. Rev. **D91** (2015) 014506

AMIAS Correlations

C. Alexandrou, T. Leontiou, C.N. Papanicolas and E. Stiliaris: *A Novel Analysis for Excited States in Lattice QCD – The Nucleon Case,* Phys. Rev. **D91** (2015) 014506

AMIAS in the Emission Tomography

Tomographic Reconstruction

AMIAS in the Emission Tomography

 \implies Loizos Koutsantonis (CyI)

Nuclear Imaging Technologies in Tomography

Conclusions

The AMIAS Method is demonstrated to:

• Be model independent.

• Extract maximum information for all available Multipoles, without any bias; it is capable of ranking them in order of significance.

 Account for the correlations amongst the contributing Multipoles, and to provide an easy visualization of them.

• Yield uncertainties which have a precise meaning, in terms of confidence levels.

• Be numerically robust, regardless of the data base.

Thank You!

One-Day Workshop on New Aspects and Perspectives in Nuclear Physics September 8, 2012 University of Ioannina, Greece

