On proton deformation: Multipole amplitude extraction from photoproduction data with the AMIAS

Lefteris Markou Costas N. Papanicolas Efstathios Stiliaris

Contents

- Introduction
 - Formalism
 - Current status of EMR measurements and model predictions
- The Athens Model Independent Analysis Scheme
 - > Why use the AMIAS
 - Methodology
- Analyzed dataset: combined $\gamma p \to p \pi^0$ and $\gamma p \to n \pi^+$ data, including the latest MAMI data
- Results
 - Extracted multipole amplitudes / EMR
- Conclusions

Nucleon Resonances, Partial waves, Multipoles ...

Resonance	Partial Wave	Ι * π	I	J	M [MeV]	Multipoles
Δ(1232)	P ₃₃	1	3/2	3/2	1232	E ^{3/2} , M ^{3/2} ₁₊
N(1440)	P ₁₁	1	1/2	1/2	1440	M ₁₋ ^{1/2}
N(1520)	D ₁₃	2	1/2	3/2	1520	E ₂₋ ^{1/2} , M ₂₋ ^{1/2}
N(1535)	S ₁₁	0	1/2	1/2	1535	E ₀₊ ^{1/2}
Δ(1620)	S ₃₁	0	3/2	1/2	1620	E ₀₊ ^{3/2}

- L = 0, 1, 2, 3, ... correspond to S, P, D, F, ...
- Partial wave notation (I $_{\pi}$) _2I, 2J . I will be using L instead of I.
- Multipoles to which a resonance can give a resonance contribution.
- Important quantity $EMR = \frac{E_{1+}^{3/2}}{M_{1+}^{3/2}}$
- EMR indicates the amount of deformation of the nucleon.

Connect multipoles to observables

* Multipoles and CGLN amplitudes are complex quantities

Isospin decomposition

Multipoles:
$$A_L$$
: E_{L^+} , E_{L^-} , M_{L^+} , M_{L^-} , $L \leq L_{cut}$

$$A_{L}^{I}: E_{L^{+}}^{I}, E_{L^{-}}^{I}, M_{L^{+}}^{I}, M_{L^{-}}^{I}, I = \frac{1}{2}, \frac{3}{2}, L \leq L_{cut}$$

For full Isospin decomposition data from two channels are needed:

$$A_{\gamma p \to p \pi^{0}} = A^{1/2} + \frac{2}{3} A^{3/2}$$
$$A_{\gamma p \to n \pi^{+}} = \sqrt{2} \left(A^{1/2} - \frac{1}{3} A^{3/2} \right)$$

EMR: earlier analyses

Includes statistical, and where available, model and systematic uncertainty

Error estimated by averaging several different analyses

EMR: earlier analyses

Includes statistical, and where available, model and systematic uncertainty

Error estimated by averaging several different analyses

-1.5 -2 EMR(%) -2.5 -3 -Davidson '97 -Hanstein '98 Blanpied '01 -Ahrens '04 -3.5 -BRAG '01 -Beck '00 -Beck '97 PDG '₁₆ -4

Mean Value

EMR: earlier analyses

Includes statistical, and where available, model and systematic uncertainty

Error estimated by averaging several different analyses

Model prediction

Mean Value

• Determined EMR from the same data and only from the $p\pi^0$ channel. Made different model assumptions.

- Determined EMR from the same data and only from the $p\pi^0$ channel. Made different model assumptions.
- Extracted S-P and D₁₃ amplitudes.

- Determined EMR from the same data and only from the $p\pi^0$ channel. Made different model assumptions.
- Extracted S-P and D₁₃ amplitudes.
- Extracted S-P amplitudes. Higher amplitudes calculated in the Born approximation.

- Determined EMR from the same data and only from the $p\pi^0$ channel. Made different model assumptions.
- Extracted S-P and D₁₃ amplitudes.
- Extracted S-P amplitudes. Higher amplitudes calculated in the Born approximation.
- Mean value and uncertainty as a result of averaging different analyses.

- Determined EMR from the same data and only from the $p\pi^0$ channel. Made different model assumptions.
- Extracted S-P and D₁₃ amplitudes.
- Extracted S-P amplitudes. Higher amplitudes calculated in the Born approximation.
- Mean value and uncertainty as a result of averaging different analyses.
- Data from p(y,y), $p(y,\pi^0)$, $p(y,\pi^+)$. Fitted up to F waves. Different assumptions for different non-resonant amplitudes.

- Determined EMR from the same data and only from the $p\pi^0$ channel. Made different model assumptions.
- Extracted S-P and D₁₃ amplitudes.
- Extracted S-P amplitudes. Higher amplitudes calculated in the Born approximation.
- Mean value and uncertainty as a result of averaging different analyses.
- Data from $p(\gamma,\gamma)$, $p(\gamma,\pi^0)$, $p(\gamma,\pi^+)$. Fitted up to F waves. Different assumptions for different non-resonant amplitudes.
- Extracted S-P amplitudes. $\sigma_{_{EMR}}$ was determined to be ± 0.03 $_{_{stat}}$ % and an extra 0.3% 14 was estimated as model error, motivated by the work of the BRAG.

Goal

To extract EMR, at W = 1232.2 MeV, in a model independent fashion for the first time.

Cornerstones of our analysis

- We impose only the constraints dictated by theory and no other. In our case
 - > Multipoles with the same quantum numbers I, I, J have the same phase $\pm n\pi$ (Fermi-Watson theorem)
 - Fix all multipole phases to the phases determined from πN scattering experiments
- Do not assume a L_{cut} . Rather allow all multipole amplitudes to freely vary and let the data decide up to which L_{cut} parameters are relevant
 - e.g. Some analyses extract up to L_{cut} = 1, 2 or maybe even 3, but this choice is somewhat arbitrary and preconceived
- Identify possible sources of systematic errors and treat them within the AMIAS framework

 \triangleright e.g. Normalization errors, background, uncertainty in pion angle, uncertainty in E $_{_{\gamma,lab}}$

Data used in the analysis

γp → pπ ^o				γp → nπ ⁺			
Obs	E _γ (MeV)	Reference	#d.p.	Obs	E _y (MeV)	Reference	# d.p.
$d\sigma_{_0}$	337.6 – 342.0	Adlarson - 2015	30	$d\sigma_{_0}$	335 - 345	Beck - 2000	10
Σ	335 - 345	Leukel – 2001 Beck - 2006	17	Σ	335 - 345	Beck - 2000	10
Т	339.0 - 340.06	Schumann - 2015*	18	т	335 - 356	Dutz - 1996	11
F	339.0 - 340.06	Schumann - 2015*	18				
G	326 - 354	Ahrens 2005	3	G	326 - 354	Ahrens 2005	6
Ρ	335 - 365	Belyaev 1983	6	Ρ	330 - 350	Get'man 1981	6

* Unpublished

Results

- Following are the Probability Distribution Functions (PDF's) of selected multipole amplitudes.
- Amplitudes up to L = 5 were extracted where convergence was reached.
 - > Convergence: χ^2_{min} reached and extracted amplitudes remain unchanged when going from L_{cut} to $L_{cut} + 1$

• L ≤ 1

> • L ≤ 1 • L ≤ 2

> • L ≤ 1 • L ≤ 2 • L ≤ 3

L ≤ 2
L ≤ 3
L ≤ 4

L ≤ 3
L ≤ 4
L ≤ 5

> • L ≤ 4 • L ≤ 5 • L ≤ 6

Convergence

L = 1 amplitudes

• L≤1 • L≤5

L = 1 amplitudes

• L≤1 • L≤5

- MAID07
- SAID (PR15)
- B-G(2014-02)

L = 2 amplitudes

• L ≤ 2 • L ≤ 5

L = 2 amplitudes

• L ≤ 2

• L ≤ 5

• MAID07

• SAID (PR15)

• B-G(2014-02)

- The AMIAS analyses where all L ≤ 5 and all L ≤ 6 amplitudes are allowed to vary show identical results, therefore, convergence is reached.
- Maximum information is extracted from the data.
- No model assumptions made (e.g. where to place L_{cut}, e.t.c.).

L _{cut} ≤	χ^2_{min}	EMR(%)
1	120	-2.3 ± 0.2
2	109	-2.18 ^{+0.26} -0.23
3	88	-2.2 ± 0.3
4	83	-2.3 ± 0.3
5	80	-2.5 ± 0.3
6	80	-2.5 ± 0.3

- Model Dependent analysis
- Model Independent analysis

 $EMR(\%) = -(2.3 \pm 0.2)$

$$EMR(\%) = -\left(2.5 + 0.3 - 0.4\right)$$

Model Predictions:

- SAID (PR15): -2.2
- SAID (CM12): -1.9

- Model Dependent analysis underestimates the derived errors
- Model predictions naturally closer to the Model Dependent analysis

• Full dataset: statistical errors

• Full dataset: statistical errors

 $EMR(\%) = -\left(2.47 + 0.24 - 0.24\right)$

34

- Full dataset: statistical errors
- Full dataset: statistical & systematic errors

$$EMR(\%) = -\left(2.47 + 0.24 \\ -0.24\right)$$
$$EMR(\%) = -\left(2.53 + 0.34 \\ -0.35\right)$$

Model Predictions:

- SAID (CM12): -1.9
- MAID07: -2.1
- Sato Lee: -2.7

Correlation Plots:

- 2-dimensional scatter plots of parameters
- Color coded according to the χ^2 value of each event (adds another dimension)

Correlations of $E_{1+}^{3/2}$

- Mildly correlated with background amplitudes
- No correlation between the two resonant amplitudes

- Full dataset: statistical errors
- Full dataset: statistical & systematic errors
- Reduced dataset (No P, No G)

$$EMR(\%) = -\left(2.47 + 0.24 - 0.24\right)$$
$$EMR(\%) = -\left(2.53 + 0.34 - 0.35\right)$$
$$EMR(\%) = -\left(2.45 + 0.47 - 0.31\right)$$

Model Predictions:

- SAID (CM12): -1.9
- MAID07: -2.1
- Sato Lee: -2.7

EMR: analyses

Includes (where available) statistical, model and systematic uncertainty

 \mathbf{T} Error estimated by averaging several different analyses

Model prediction

Mean Value

Summary / Conclusions

Using AMIAS, a model independent amplitude extraction from the most recent photoproduction data at the $\Delta(1232)$ was performed. It was found:

- Multipole amplitudes up to L = 5 were required to reach convergence.
- Some extracted amplitudes were found to be highly correlated between them.
- The background amplitudes were found to be more correlated than the resonant amplitudes.
- Through correlations, background amplitudes affect the extracted value of the resonant amplitudes and EMR.

Summary / Conclusions

- A $EMR(\%) = -2.5 \pm 0.3_{(stat+syst)}$ for the first time free of model error was determined.
- Good compatibility with phenomenological models and earlier analyses confirms the validity of the model assumptions behind the analysis methods used up to now.

Acknowledgements

I would like to thank

Reinhard Beck Michael Ostrick Sergey Prakhov Lothar Tiator Yannick Wunderlich

Thank you

www.cyi.ac.cy

