

HELLENIC REPUBLIC National and Kapodistrian University of Athens

Division of Nuclear Physics and Elementary Particles

PhoSim: A Simulation Package Designed for Macroscopic and Microscopic Studies In the Time-Resolved Optical Tomography

<u>Aristotelis-Nikolaos Rapsomanikis</u>, A. Eleftheriou, M. Mikeli, M. Zioga, Ch. Pafilis and E. Stiliaris

HINPw4 2017, University of Ioannina

Principle of Optical Imaging

Discovery of the Physiological Window for the light absorption in tissues by Jöbsis (μ_{α} , absorption coefficient)

Jobsis, F.F. (1977). Noninvasive infrared monitoring of cerebral and myocardial sufficiency and circulatory parameters. Science 198, 1264-1267.

Time-Resolved Photon Propagation

depends on the physical width of the medium under investigation!!!

PhoSim an Algorithm Dedicated to TROT Modalities

- **PhoSim**, can resolve the Mie multiple scattering problem by utilizing the Henyey-Greenstein Phase Function.
- This is extremely useful, since it only depends on one parameter g (-1≤g≤1), that represents the average cosine of scattering.

$$P(\theta) = \frac{1}{4\pi} \frac{1 - g^2}{\left[1 + g^2 - 2g\cos\theta\right]^{3/2}}$$

PhoSim's capabilities

Creation of multi-layer (tissue) environments:

Variation of the g parameter, the Scattering Length (SL) and the index of refraction n_i for propagation areas.

Insertion of optical spherical objects:

<u>Ray-tracing:</u>

PhoSim can ray-trace every event throughout the different simulated tissue

materials.

• <u>Time-of-Flight (ToF) Information:</u>

Calculates the (ToF) for each photon using its optical path segments and the refraction index of the medium.

PLANAR IMAGING AND TOMOGRAPHIC CAPABILITIES

• The Time of Flight information provided for simulated rays allows a proper event filtering on the detected data (planar images).

Planar Images

3D Reconstruction

Efficiency Measurements For Point Source

Efficiency = $\epsilon = N_{int}/N_{det}$

Efficiency vs g-Factor

Slope Vs Average Numbers of Scattering

Power Vs Average Numbers of Scattering

Slope (A) depicted in each of the previous graphical fits vs the Average Number of Scattering.

The best fitting curve in this case was: y = A/x + B Power of the exponential (**D**) depicted in each of the previous graphical fits vs the Average Number of Scattering.

The best fitting curve in this case was a linear equation: y = Ax + B

Efficiency Measurements for Two Volumes

- Efficiency calculation of two different materials for the same g but for different scattering lengths SL_1 and SL_2 .
- For the fist volume the average number of scatterings N_1 was the 40% of the total ones **N**.
- The efficiency was also calculated when the volumes where commuted as depicted in the following picture.

Efficiency vs g-Factor for Interchanged Volumes Different Scattering Lengths

Slope Vs Average Numbers of Scattering

Power Vs Average Numbers of Scattering

The best fitting curve in this case was:

y = A/x + B

The best fitting curve in this case was a linear equation:

y = Ax + B

Efficiency Measurements for Two Volumes

• Efficiency calculation for two different materials having always the same scattering lengths $SL_1 = SL_2$ but for different average cosines g_1 and g_2 . (for simplicity we keep the average cosine in one of the two volumes constant with 0.92).

• With red color charts correspond to the first case scenario (left) depicted in the figure wile the blue ones to the second.

Efficiency vs g-Factor for Interchanged Volumes Same Scattering Lengths

20 Scatterings

Results and Discussion

• We can observe that the efficiency, in every case, follows an exponential declination for high values of \mathbf{g} (0.99 \rightarrow 0.88) and for the lower values ($\mathbf{g} < 0.88$), a linear declination despite the average number of scattering (ANoS) or the orientation of different materials used. Therefore it is safe to use the following function

$$\mathcal{E} = Ag + B + Ce^{D(g+E)}$$

in order to approximate our results and thus derive a general rule that we could use. Where ε is the efficiency and g is the average cosine, all the other (A, B, C, D, E) are constants to be calculated.

• Another important discovery derived from the second and the third simulation cases:

If a two layer volume (and it is safe to guess, a higher layered one) is to be probed by near infrared radiation in order to increase the detection efficiency the area with the fewer ANoS or the greater **g** value or the one with the better combination of **g** and ANoS leading to less diffusion, must be used as the starting point.

. 2

Thank you

89 144

