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Abstract

Neutron stars manifest one of the Universe’s densest objects, where matter is compressed at
high densities, and nuclear physics combines with general relativity. The dense nuclear matter is
described by the yet unknown equation of state, simulating the fluid interior, where its combination
with the Tolman-Oppenheimer-Volkoff equations provides the neutron star structure. Although
cold non-rotating neutron stars are a valuable source of constraints, temperature, and high
rotational frequencies will significantly improve and extend our knowledge. In particular, the
research is focused on the construction of both cold and hot, lepton-rich matter equations of
state and their implications on macroscopic as well as microscopic quantities of neutron stars.
Specifically, universal relations are produced for each representative case, and a criterion for the
final fate of compact objects is extracted. Furthermore, the research is extended to proto-neutron
stars and the hot and rapidly rotating remnant of a binary neutron star merger as insightful tools
to provide constraints from the aspect of thermal and rotation effects. The former is directly
related to neutron stars’ internal structure and stability. Finally, the theoretical study of uniformly
rotating neutron stars containing either cold or hot matter, and the observation of isolated or
binary neutron stars, along with the present research, will shed light and provide constraints on
the equation of state of dense nuclear matter.
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Iepiinyn

O1 aotépeg VETPOVIOV amoTEAOVV £va, 0md TO TO TUKVE AVTIKEILEVO TOV ZOUTAVTOC, OOV N
TLPNVIKY PLGIKT] GuVOLALETL e TN YeVIKT Bempia g oxetikotnToC. H mokvi mopnvikn VAN
TEPLYPAPETAL A0 TNV AyveOSTN akOUn KoTaoToTik eEicmaon, 1) oroia avamrapiotd Ty VAN 6To
E0MTEPIKO TOV OOTEPA KAl 0 SLVOVAGHAG TG pe Tig e&lomoelg Tolman-Oppenheimer-Volkoff
TaPEYEL TN SOL| TOV AOTEPO VETPOVIOV. AV KOl 0L WoYPOTi L1 TEPIGTPEPOLEVOL OOTEPES VETPOVIDV
glval po ypnoun yn mepopiop®v, 1 Beprokpacio Kot ot VYNAEG TEPIOTPOPLKESG GLYVOTN-
TEG PEATUOVOVY ONUAVTIKA KOt EXEKTEIVOLV TO £MimEdO TNG Yvdong pog. Ewdwotepa, n épguva
EMKEVIPAOVETAL GTNV KUTAGKELT TOCO YuXp®V 000 Kal Oeppudv, TAOVCIOV 6€ AETTOVIKY VAN
KOTOOTOTIKOV EEI0MCEMY KO TIG EXMTOGELG TOVG GTA PLOKPOCKOTIKE KOl LKPOGKOTIKA LLeyEOm
OV TEPLYPAPOVV TOVG OLOTEPEG VETPOVIMV. ZVYKEKPLUEVA, TOPAYOVTOL KAOOAMKES GYETELS Yol
KABE aVTITPOCHOTEVTIKN TEPITTOON Kot eEAYETOL £Vl KPLTIPLO Y10l TO TEAMKO GTAO10 TV CLUTAYMV
avTikelévov. Emmiéov, 1 épevvo emeKTEIVETAL GTOVS TPOTAGTEPEG Kot 6TO Beppd Ko TayEmg
TEPLOTPEPOUEVO VITOAELLLLO LILOG CVYXDVELGTG EVOG SVASIKOD GUGTHLLOTOG OLGTEPMY VETPOVIDV,
Ll Kot 0toTEAODV 131aiTepa YpoILe. LECH Y10, VO EEAYOVLLE TTEPLOPIOHOVG e BAon TtV Beppo-
kpaoio Kot v neptoTpoen. To mpoavapepBév oyetileton duesa pe TNV EGMOTEPIKT SOUTN Kot
T o1ofepdTTa TOV AoTEPWV VETpovimv. TEAOC, 1 Bempn Tk HeAETN OLOOLOPOA TEPIOTPE-
POUEVOV 0OTEPMV VETPOVIWV, TOL TEPIEXOVV €lTE Yuypn €ite Beppn| VAN, Kot 1 TAPATHPNON
UELOVOUEVAOV 1 SVASIKDOV 0oTEP®VY VETPOVI®Y, nali Le TV Tapodoa EPELVH PiYVOLV MG Kol
TAPEYOVY TEPLOPIGLOVE GTNV KATAGTATIKY £5I0MON TNG TUKVNG TUPNVIKNG DANG.
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Extetopévn epiinyn

H téppa tov potevdv aotpmv amotedel To TEAKO 6TAd10 TG 0oTPIKNG eEEMENG Ko TeptAapBavet
AEVKOVG VAVOLC, AoTEPES VETPOVIMYV, KABDS Kot pehavég onég. Omoto amd avtd to avtikeipeva
oynuatiotel 6to TEA0G TS {mNg VOGS OTEWVOD 0GTEPD, TO GUUTOYEG AVTO avTikeipevo Ba {noet
apetdfinto and v Kotdotacn wov oynuatiomke. To copmayn actépla dapépovy and ta.
cuvnoiopéva, Kabmg dev Kaive TupnvIKG KOG, ETOUEVOG deV vTooTnpilovTatl amd TV Beppukn
migon gvavtio otnv EAEN TG Boapvtntag. Ewdwodtepa, ot Agvkoi vavor vrootnpifovtot and tnv
TEDN EKPLAOLOD TV NAEKTPOVI®V, Ol AGTEPEG VETPOVIMV O TIC AMMOTIKES AAANAETIOPACELS
peta&d Tov voukAeoviny, evd ot LEAAVES OTTEG EIVOL ACTEPES TOV EYOVV KATAPPEVGEL KL dEV
xperaeTor VAN Yo T Ao tovg. Emimiéov, evd o1 Aevkol vévotl propotdv vo AABouv S10popeTIKES
HOPQEG LOVO OTO Kupiapya TUPNVIKE €101, Ol AOTEPES VETPOVIMV LITopovV Vo, VTOoTNPiEoVY
SLaPOPEG LOPPEG, OTMG ACTEPES TTOV TEPLEYOVV VILEPOVLA, TAPGEEV VAT, VAN KOLAPK KOOMG Kot
vPp1dkol aoTépec. NV TEAELTAIN TEPIMTOOT), QLT HING LOVPNG TPOTOS, TOL Elvat TOAVMOG M
poipa TV peyaldtepmv aoTEPIOV, oynHaTileTat Lo anpdoiTn TEPLOYN GTOV YDPOYPOVO.

2V TEePIntTOOo TOV AcTEPMV VETPOVIMV, Kat ot Técoepls Bepelddeig dvuvapetlg (loyvpn,
ASVVOUN, NAEKTPOUOYVNTIKY, BopdTNTa) EUTAEKOVIOL KOL OVTITPOCOTEVOLVY VOV TPOTO Y10l TO
GUUTTOY VO EKINADVEL TO, IO TUKVE TOV OVTIKEILEVD LE E0QTEPIKN dopr). Ot aoTEPEG VETPOVIMV
Bpiockovv ) B£01 TOVG OVALESO OTO TO EKTANKTIKG OGTPOPUCIKY OVTIKEIEVE, KAODG GLV-
Svalovv TV TVPNVIKN PLGIKT LE TN YEVIKY OYETIKOTNTA. H TpdTN €100yEL TNV KOTAGTATIKN
eklomon (KE), n onoia ivatl vwoype®Tiky Yo TNV TEPLYPUPT) TOV PEVGTOL GTO ECOTEPIKO TOVG,
v 1 devtepn mopéyet Tig eElomaoelg Tolman-Oppenheimer-Voltkoff (TOV) 6mov epappodletor n
KE. O cuvdvacog Toug 0dnyel otny TEMKT doun Tov actépa vetpovinv. Qotdc0, Tpénet vo
toviotei 0t 1 KE givat akopo ayvemotn, 1060 amd Oempntikn 660 Kot oo TEpapotiky dmoyn. H
ayvootn KE éyet onpavtik enidpaocn otig 1010tn1eg Tov aotépa vetpoviav. 'a va ealelyovpe
mv afepardmra e KE, facilopacte ota dedopéva mapatipnons t060 LELOVOLEVOV 0CTEPMV
VETPOVIOV OGO KOl GLYYOVEVGEDY SVLUSIKMY GUGTNUATOV ACTEPWV VETPOVIOYV, GLUGTNUAT®OV
AGTEPOV VETPOVIOV-LLODPOV TPUTOV, EKPREEDYV covTEPVOPal KAT.

H vropén actepidv vetpoviov e&dyetot amd v epgavion ekpié&emv covmepvoPa, Kabmg
Kot SLOSIKOV akTivav X 0oV 1 EKTEUTOUEVT aKTIVOPOALN, MG CUVETELX LG VANG TTOV GVGOM-
peveTaL amd £va cLVod0 aoTéPL, amotehel TNV avtiotoyn Evoelln. H npodtn mapatipnon evog
AOTEPO VETPOVI®V NTAV LIE TN LOPPT| EVOG TAAGAP, OV £ival EVOG TOXEMS TEPLOTPEPOLEVOG KOl
€EALPETIKA PLOYVNTICUEVOC AOTEPAG VETPOVI®MV. AVTE TO AVTIKEILEVO TPOPOSOTOVVTOL OO OKTIVO-
BoAia poyvntikng dStmoAkng akTivoPoiiog Tov TPOEPYETOL and TNV TOGOTNTO TNG TEPIGTPOPIKNG
EVEPYELNG TTOV YAVETOL.

Ta acTépia veTpovimy pmopovv va Bempnfody og yrydvtiot mopiveg pe N mepimov 10°7.
Avatpéyovtag 6tn S0 TOL AGTEPH VETPOVI®V, CUVAVTALE TEVTE KOPLEG TEPLOYES, Ol OTTOIEG
glvar: (o) o ecmtepkdc Tupnvag, (B) o eEmtepkds TupNvog, (Y) 0 pAoldc, (8) to mepifinua
kat (&) N atpnodoeopa (Lattimer, 2010, 2014). Egkivdvtog v meptypap| amd T EOTEPIKA
OTPAOUATA, 1) OTUOGPALPO EVOG OGTEPQ VETPOVIOV £XEL TAYXOC ~ 1 cm Ko EAEYYEL TNV TOPOL-
TNPOVUEVT] PUCLATIKT KOTOVOUN EVEPYELNG KOL T SULUOPPDGCT) TOV AVASVOUEVOD PAGLOTOG
potoviov. [Ipoy®pdvTag TPog T0 ECMTEPIKO, GCLVAVTALE TOV PAKELO, OTTOV O POLOG TOV Eival
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n Beppopdvocn. v apaypotikdtra, emnpedlel T HETOPOPA Kot TV aneAevBipman g
Oeppkng evépyelag amod v emeavelo. Tov aotépa. H Beppokpacio Tov aotépa opileTon pécm
g taitepng ovvheons TV ototyeinv Tov, dNANSY Ta AGTEPLY TTOL EXOVV ATUOCEUIPO ATTOTE-
Aobpevn amd v3POYOVO PaivovTal IO Yuypd and ekeiva pe TepPApaTa VYNA®V ctotyeimv. Ot
mpoavapepbeiceg meployEg mepiEyovv VAN Le T popen mAdopatoc. Enetta, kabmhg nepdcovye to
@akelo, epoavifetatl o Ao16c. O Protdg exteivetar yio ~ 1 — 2 km ko oynuatileton kuping and
mopnves. o va elpoaote akpiPeic, Ta kupiapyo €0n Tupvov £opTd®VTOL ATO TNV TUKVOTNTOL.
Tuykekpipéva, kopaivetar amd °6 Fe yio HAn pe mokvotnreg pikpotepeg omd mepimov 106 g cm™3
€mg mopnveg pe apdud palog tepinov 200. To KAAGHO Tp®TOVIOV 6T dlEMOPT PAOLOV-TVPTVOL
oen ~ ng/3 (ng, 6mov 10 Ny = 0.16 fm 3 VEOSNADOVEL TNV TVKVOTNTO KOPEGLOD, ATAMDVETAL
peta&d tov tpndv (0.1 — 0.2). Enueidvovpe £dd 0TL TETO01 EEUPETIKG «TAOVGLOLY TTVUPTVEG dEV
pUropovv va Topoatnpnbodv 6To EpYAcTPlo, OAAL ENLTAYVLVTES CTAVIOV 1IGOTOT®V B0, LITopovGaV
{omg VoL dMLIOVPYHGOLY KATOLOLS Otd oVTOVC. METAKIVIIVOVREVOL 10 LEGH TOL PAOLOD, TN
GTIYUN IOV 1) TUKVOTNTO GUVAVTE TV TUKVOTNTO. «neutron drip», nyg = 4 10'! g cm™3 (6mov T0
ANHKO duvapkd vetpovimv efvar undév), ta vetpovia dloppEovv and Toug Tupnves. Aaupdvovtag
VIOYN TO TEAELTOL0, GE VYNAOTEPES TUKVOTNTEG 1) TAELOVOTNTA TG VANG PpiokeTal 610 pevotd
vetpoviov. DTévovtag ot SETPAVELN PAOLOV-TVPTVEL, 0L TVPTVES Elval TOGO GTEVA TomoOeTN-
HEVOL TTOL e VOV TPOTO EPATTOVTOL KEIKOVIKAY. Q0T0G0, B0l pmopovse va eivat o€ yapmAdTepeg
TUKVOTNTEG OOV TO TLPMNVIKO TAEY U Yupilel «péoca - E£@» kot oynuotilel éva mAéypo omd
KeVA, To omoia TEMKAE CLUUTIECOVTOL GE TUKVOTNTEG KOVTA € Ng. X& APKETH VYNAES TUKVOTITEG,
Eexvmvtog and 0.1 ng, epeavifovrar ot Aeyopeves «pacels COpaptK@vy, OTOV Ol TAPUULOPPDCELG
yivovton akpaieg Kot ot @aiptkol mopnves petatpémovtat o€ pafdovg 1| mthdkes. Emumiéov, o
0T T0 P10, OOV N TVKVOTNTA EivaL TEPimOV ps /3, pE ps Tepimov ico pe 3 x 10 gem 3 va
givor n ToKVOTNTO TLPNVIKOD KOPESLOV, 1] AVOLOLOYEVIS PAGT) GTOLG TUPNVEG HETATPETETOL
G€ 110, OLOLOYEVH PAGT VoukAEoVimV oTov e€mTepikd mupnva. EmmAéov, 1 OAn eivor ovdétepn
®G TPOG TO POpTio, 0dNYdVTAG o€ 150 apBud TpwToVviV Kot nAekTpovimv. o peyoldtepeg
TUKVOTNTEG amd P, EKTOC TOV TPOTOVIOV Kot TV NAEKTpovimv, gpeavifovtol ta pidvia. Térog,
Aappdvovtog vtoyn T cLVOEST TOV E6MTEPIKOD TVPNVA, 1 VIAPYOVGA YVAGCT TEPIEXEL VYNAES
afepardtnrec. ‘Etot, Oa pmopovoe va kopaivetatl omd pia tpoéktaon Tov eEMTEPIKoD TupHva.
Kot vo. amoteleitol Kupimg amd voukiedvia, 1 o propovace va, givat évo pety o voukAgoviov
Kot Tapdagevng DANG He TN LOPPT VTEPOVIMV 1] L1 TEPLOPICUEVOV KOLAPK. Q6TOGO, OPIGUEVESG
Bewplec, og aKPALEC TEPIMTOGELS, VTOONADVOVVY OTL TO. VOUKAEOVIO Popel va ddcovv T BEom
Tovg €€ oAokApoL o€ U KaBopiopéva KOVAPK 6TO KEVTPO TOV AGTPOL, ONILOVPYAVTAG £VO TOAD
O0POPETIKO AGTEPL.

Ta axpaio YopoKTNPLOTIKA TOV HIETOVV T AGTEPLO VETPOVIMV TO TOTOOETOVV GE SLUPOPETIKEG
PUOIKES OPYES OO T VTOAOUTA AGTEPLA, Ol OTOIEG ATALTOVVTOL YL0, TV KOTOVON OGN TOVG. ZUyKe-
KPUEVA, TO TEPLOGATEPA AGTEPLO LTOPOVV VO TEPLYPAPOVV TANP®S 611 Nevtdvela Bapvnta
AQpPavovTag VTOYN TNV TLPMVIKY PUOTKT YOUNANG Kot ATOUIKNG evEpyelag. Ot cuvOnKeg og
QVTH TNV TEPIMTMOOT EIVOL OVGLUGTIKA YV®GTEG 6T0 gpyootiplo. Ta aotépla vetpovimv mBodv v
VAN o€ TETOLEC OKPAIiEC TUKVOTNTEG TTOV 1) TUPTVIKY KOl 1] COUATISIKT PLGIKT VoL TPAYLLOTL
amapaitnTeg yuo v akpifn meptypoaen tovs. H Nevtdvia vdpootatikn icoppomia, 1 omoia givorl
EMOPKNG Y10 TOL TEPICCOTEPT ACTEPLOL, ATOTLYYXAVEL Yl TO AoTEPLY VeETpoviny. [IiBavag to peya-
AMTepo eAdTTOp glvar 1) advvapio TpdPAeyng vTapéng g péyiotg palas. Emmiéov, o Laplace
é8e1&e OTL M ToxvTTO Sropuyng, /G M /R, Bo pmopodoe tehicd va vrepPel Ty taydTnTa Tov
POTOS, OONYADOVTUG GTNV VYIGTI GNUAGIO TOV 0Pi®V GUUTOYOTNTOG TOL TEPLYPAPOVTAL OO TOV
1610. Q0T000, 1 EIGAYOYN TNG YEVIKNG GYETIKOTNTAG, EMéPale Eva dplo ot pale pali pe éva
Oplo Yo TN HEYLOTY TUKVOTNTO HECH GE OTOLOONTOTE AGTEPL VETpOovimv. Me avtd Tov Tpomo,
001 YOVHOGTE GE £va OPLO YL TNV TEAKT EVEPYELOKT TUKVOTNTA TNG YVYXPNG PAPLOVIKNG VANG
OTO CUUTOY HOG. ZOUTEPOUCUATIKA, 1] £VTOVI] GUYKEVTIPMOOT] VANG OTO, AOTEPLL VETPOVI®MV UTOPEL
Vo TEPLYPOPEL LOVO GT YEVIKT OXETIKOTNTA, TN Oempio T PapvtnTog Tov ATveTdy mov amd
OV TNG TEPLYPAPEL TOV TPOTO LLE TOV OTOI0 1) O OdVVAUN SVVALT GTH PVGT OPYOVAVEL TNV
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Katovoun g LAlos Kot T@V CLOTUTIKMY TMV L0 TUKVAV OVTIKELLEVOV GTO GOUTOV.

H cvvolikn doun tev dotpmv vetpoviov eréyyetol péow g e&icmong TOV, 6mmg o
avapéptnke. H ouvBeom tovg dev ennpedlet Tig mpoavapepbeiceg e5lodoelc. Zuykekpléva, ot
e&lodoelg aotpikng dopng TOV mov mapéyovtat LEGH TNG YEVIKNG OYeTKOTNTOG EKPPpAlovTat g

dP(r)  GE(r)M() (1+ P(r)) (1+ 47rP(r)r3) (1 2GM(1“)>_17 )

dr c2r? E(r) M (r)c? cAr
dM(r)  4mr?
o =2 ), 2

6mov P givou 1 mieom, £, mov 1ovTal e pc?, eivar n evepyetakt mokvotta kKot M givon
gomtepkn Papvtikn pala oty aktiva . Qotdc0, o1 e€lomaoelg TOV dev umopovv wévo vo
Tap€ ovy ELoIKEG Aacelc. o vo égovpe Uotkég MGELS, aVTEG o1 eEICMOELS d1EmOVTL OTd
oplakég cuvinkeg. Eiducotepa,

* T'lar = 0, 6Aot o1 Opot kau | M givar pndév,
* P =0 omv empdvela 6nov r = Rpax K0 M = Mpax.

Mia KE pe ™ popen P(E), mov mpoépyetal omd TV Tupnviky QUGIKT, TEPTYPAOOVTUG OANL TO
GTPDUOTA EVOG AOTEPO VETPOVIV, DTLOYOPEVEL iol LOVASIKT KOUTOAN 0KTivag-palag. Ado yevikd
YAPAKTNPLOTIKG puopolv va e&oyBovv: (o) eivat GUVETELD TNG YEVIKNG GYETIKOTNTOG OTL 1) LEYLOTN
pélo veapyet o onowadnmote artiatiy KE. Eivar evpémg yvawotd 6t o dpog uéyiorn palo dev
vrdpyel ot Nevtavea Bapvtnta Kot (B) n kKAion ¢ kapmding palog-oktivag vayopeheTon
and ) evon g KE. Avtd eaivetal and v adidotarn oviivon 1@V Sopkodv eElo®oemy,
AYVOMVTOG PUOIKA TOVG GYETIKIGTIKOVG OPOVC.

O mpocdiopiopds g péylomg palos aotépmv vetpovinv gival éva pakpoypdvio nua
OTNV 0GTPOPLGIKT, KAOMG oXeTICETAL AUETH LE TV OVOYVDPLOT LEAOVDV OOV KoL TV AyVm-
GTI CUUTEPIPOPA TNG TVPNVIKNG VANG o€ VYMAES TUKVOTNTEG. MEYPL QTN TN OTIYUN, 1 TTO-
patfipnorn Un/apyd TEPIOTPEPOUEVOV AGTEPLOV VETPOVIOV HoG Topeiye cofapodg meplopt-
GUOVG OTNV TUKVY TUPMVIKN VAN LEC® NG PEYIoTNG duvartng pnalog tovg. Ot petpnoels te
™ peyaivtepn palo actepidv vetpoviov meptiopfavouv: (o) to PSR J1614-2230 (M =
1.97 + 0.04 M) (Demorest et al., 2010) (] and mpdopartn enelepyocio TG TOPATHPNONG
M =1.928+0.017 M, (Fonsecaetal., 2016) kot eniong M = 1.908+0.016 M, (Arzoumanian
et al., 2018)), (B) to PSR J0348+0432 (M = 2.01 £ 0.04 M) (Antoniadis et al., 2013), (y) to
PSR J0740+6620 (M = 2.147059 M) (Cromartie et al., 2019), o (8) To PSR J2215+5135
(M = 2.27f8:£ M) (Linares et al., 2018). EmuAéov, vrdpyet po AETTopepng LEAETT) GYETIKE
LLE TN GLYVOTNTO TEPLOTPOPNG TOV TEPICTPEPOLEVMV AGTEPLDV VETPOVIMV (Y10l [0 OVOGKOTNON
BAéme v Avagopd (Patruno et al., 2017)). To Toy0tepa mepiotpe@dpevo mdAcap mov £xstl Ppebdel
glvar 1o J1748-244ad pe ocvyvotmrta nepiotpopnig 716 Hz (Hessels et al., 2006). Qotdco, 10
NTHo TOPAUEVEL AVOLYTO: YIOTL 08V EYOVUE TOPATHPTIOEL TALGOP UE VYNAOTEPES TIUES GUYVOTHTOG
oo mpoPréner i wAerovotnta Twv Bewpntindv poviédwv; Kail akoun teptocdtepo, 1t mepiopilel
TIG CVYVOTHTES TEPLOTPOPTS TV TaAoop kou yioti; (Prakash, 2015). O pehhovtikég HeETpoELS TG
pomng adpdvetag (Bejger et al., 2005) kot tng cvyvotntag Kepler pmopet va givor n amdvinon
G€ OVTA TO EPOTHLOTA BEATIOVOVTAG CTLLOVTIKA TIG YVAGELS LLOG CYETIKA UE TIS WOOTNTES TOV
OOTEPMV VETPOVIOV GTI LEYIOTN TEPIGTPOPN.

Ot emdpdoeig g KE otig 010tteg TV TeptoTpepoUevov aoTépov vetpoviav (BAéte
Avagopd (Paschalidis and Stergioulas, 2017; Stergioulas, 1998) yia eicaymyn Kot oxetikn Pi-
Broypagia) etyav apyioet va kepdilovv £dapog oyedov mpv amd 30 ypdvia and Tovg Shapiro,
Teukolsky kot tovg cuvadélpovg tovg (Cook et al., 1992, 1994a,b,c; Shapiro et al., 1989).
Enuavtikn copforn og avtd ta ntiparta giyxe emiong yivel amd tov Friedman kot tovg cuvadér-
¢@ovg tov (Friedman and Ipser, 1987; Friedman et al., 1986, 1988, 1989; Koranda et al., 1997),
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tov Haensel kot toug suvepydreg tov (Haensel and Zdunik, 1989; Haensel et al., 1995, 1999;
Lasota et al., 1996; Salgado et al., 1994a,b), kaOd¢ kot Tov Glendenning kot Tovg GuvepPYaTEG
tov (Glendenning, 1992; Glendenning and Weber, 1994; Weber and Glendenning, 1991; Weber
and Glendenning, 1992). H tayeio mepiotpopn kot o anotedécpotd g otnv KE eiyav eniong
peretn0el otig Avagpopég (Abramowicz and Wagoner, 1978; Hashimoto et al., 1994; Iida and
Sato, 1997; Lattimer et al., 1990; Lindblom, 1986; Shibata et al., 2000) kot wo TpOGPATA GTIG
Avapopég (Agrawal et al., 2008; Bejger et al., 2017; Benhar et al., 2005; Breu and Rezzolla,
2016; Chakrabarti et al., 2014a; Cipolletta et al., 2015, 2017; Dhiman et al., 2007; Haensel et al.,
2008, 2009, 2016; Haskell et al., 2018; Krastev et al., 2008; Lo and Lin, 2011; Riahi et al., 2019;
Zhang et al., 2013). EmmAéov, otnv Tupnviki 0oTpoQuGIKY], ot Beplol aoTépe VETpOVI®mY o€
GLOYETION e TNV Tayela meploTpoen elyav peietnOel otnv Avagopd (Batra et al., 2018; Marques
et al., 2017). Akoun, o1 0GTEPES VETPOVIOV GE PEYIOT TTEPLOTPOPT OE TPOTOTOMNUEVES Bempieg
Bapvnrag éxovv peretnBei Aemtopepmg amd tov Kokkota kat toug cuvepydteg tov (Doneva
et al., 2013; Yazadjiev et al., 2015).

Ytv mapovoa SutpiPn], emekteivetar n wponyodpevn Bepeimong epyacio twv Cook, Shapiro
kot Teukolsky (Cook et al., 1994b), kaBmg ko  mo npdceatn epyocia twv Cipolletta et
al. (Cipolletta et al., 2015). Xvykexkpéva, €vog peydrog apOpdc ouyypoveov KE ot onoieg,
TOVAGYIOTOV OpLoKd, TPOPAETOVY TO AVATEPO OPLo TNG HEYIOTNG MALAG ACTEP®V VETPOVIMV
M = 1.908+£0.016 M (Arzoumanian et al., 2018), evd mapdrinia avamapdyovol pe akpipeia
01 LOKPOOKOTIKEG 1O1OTNTES TNG GUUUETPLIKNG TUPNVIKNAG VANG (Y10 TEPIOTOTEPEG AEMTOUEPELEG
BAéme Avagopd (Koliogiannis and Moustakidis, 2019)). Ta povtéla avtdv tov KE givar povopie-
VOAOYIKA, Bempiog medion Kot PKPOGKOTIKE. XT1V KOTNYopio TV QUIVOUEVOLOYIKMV LOVTEAMV,
vrapyovv to: MDI (Moustakidis and Panos, 2009; Prakash et al., 1997), HHJ (Heiselberg and
Hjorth-Jensen, 2000), Ska, SkI4 (Chabanat et al., 1997; Farine et al., 1997) kot DH (Douchin
and Haensel, 2001), ot Bswpio mediov, vrapyovv ta: NLD (Gaitanos and Kaskulov, 2013,
2015) xoar W (Walecka, 1974) kot 610 pukpookomiko, vdpyovv ta: HLPS (pe Bdon mopnvicég
AAMAETOPAGELS TTOVL TPOEPYOVTAL OO TN XEPAAKY| amoTeELecLOTIKY Bewpia mediov) (Hebeler
et al., 2013), SCVBB (ypnowomoidvtag to duvopikd Argonne v18 cuv duvapuelg tpidv copdtov
mov vroloyifovtat pe to povtého Urbana) (Sharma et al., 2015), BS (Balberg and Shapiro, 2000),
BGP (oyetikiotikn aviodioyn moviov) (Bowers et al., 1975), BL (Bombaci and Logoteta, 2018),
WFF1,WFF2 (Wiringa et al., 1988) kot PS (Pandharipande and Smith, 1975). ITpénet va. toviotel
011 1 Theovotnta TV avapepfiviov KE éxouv KataoKevaoTel yio v, ovamapéyouy Tig LaKpo-
GKOTMIKEG WO10TNTEG TNG OLOIOHOPPNG CLUUUETPIKNG TUPNVIKIG VANG Kol Emiong vo. exektafohv
otV kabapn VAN vetpoviov. H enéktaon otny DAN TOL AGTEPA VETPOVIOV TPAYLLOTOTOLEITOL
o€ oyéon pe m Prta woppomia. Ocov apopd tov Aemtovikd Babud eevbepiag, ota TEPIOCO-
Tepa and ovtd Bempeitor OTL 1 KOPLL GLVEIGPOPA TV AETTOVI®MV 0QPEIAETOL GTA NAEKTPOVIOL.
OAeg o ypnowonotodpeves KE meptypdpovv 6motd Tov peuotd mupnva evOg acTéEPA VETPOVIMV.
Oa mpémet emiong va onuelwbel 6Tt Ayeg omd avTéG £X0VV EPAPLOGTEL apyLKA Yo TN HEAETN
TEMEPAGUEVOV TUPNVOV. METOED TOV aptBpod TV EEI0MGE®Y TOV XPNGYLOTOI0VVTOL, EXOVE
katackevdoel dvo KE, tig APR-1 kot APR-2 (pukpookomikd povtéda) (Akmal et al., 1998),
oV TPOPAETOVTAL ATd TO POVTELD oAANAETIdpacnc Tov e&aptdtat amd v opur] (MDI). Avtd
TO LOVTEAO OVOATTOPAYEL TOL OMOTEAECLLATO TOV LKPOCKOTIKAV VITOAOYICUAV TNG CUUUETPIKNG
TUPNVIKNG DANG KoL TNG VANG 0oTEPW®V VETpOViDV o€ pundevikn Beprokpacio [Le T TAEOVEKTN L
NG EMEKTOONG TOV o€ TENEPASEVT Beppokpacion. T v meployn otepE0) PAO10H OA®V TOV
KE, ypnopomroovvrar ot KE twv Feynman, Metropolis and Teller (Feynman et al., 1949) kafdg
kot tov Baym, Bethe kot Sutherland (Baym et al., 1971).

"Eywe mpoomdBeia va pLeleTnBobv cUGTNHOTIKG 01 TEPIOCATEPES OO TIC LOKPOCKOTIKEG
WO0TNTES TOV OLOLOLOPPA TEPIGTPEPOUEVOV OOTEPWV VETPOViMV otnv akoiovBia Kepler (n
axoAovBia oty omoia 1 Katdotoomn péylotng palog aviiototyet otn ovyvotnta Kepler), copmept-
AopPavopévng g palag, TG TOAMKNG Kot TNG IONUEPIVIG OKTIVOC, TNG YOVIOKNG TOYVTNTOS, TNG
pomn adpavelog, tng mapapétpov Kerr, tng ekkevipdmrog, Tov deiktng nédnong kKAn. Emmiéov,
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Yo AOyovg TANPOTNTOG Kot GUYKPLoNG, enetdn ot epappootues KE eivar adpovikés, eionybet pio
KE pe gpodvion vrepoviov og vyniéc mukvotnteg (FSU2H) (Tolos et al., 2017a) ko pio kotdA-
ANAn yo vo Teptypaet oo tépio Kovapk pe Baon to povtého bag tov MIT (QS57.6) (Glendenning,
2000; Haensel et al., 2007).

EmumAéov, diepevvatal 1) SuvatdtTo EVIUEPOGNE TV TPOTYOOUEVOV EUTEIPIKDOV KOHOAMKOV
oxéoemv oL GuvdEovV TNV cvyvotnto Kepler pe tn pdlo kot v axtiva 6TV KoTdoTtaon HEYIGTNG
pélog. Meletdape cvotnpatikd v e&dptnon g mapopétpov Kerr and v KE kot emiong
TaPEYOLLE TNV EEEMEN TNG YOVIOKNG OPHNG EVOC AOTEPQ VETPOVIMY TPOKELEVOD VOl EEETACOVLE
NV TEPITTO®ON OTOV 0GTEPLA VETPOVIWV BEmPovVTOL TPOYOVOL LEAOVADV OTMV. ZVYKEKPIUEVO,
eetalovue (cObppova pe v oporoyia ™ Avapopdg (Cook et al., 1994b)) 600 ariniovyieg
GOPPOTING TEPIOTPEPOUEVOV UOTEPMV VETPOVIOV, normal Kou supermassive. Ev®d ov normal
eEeMcTiEG akoAovBieg £xovv £va GEALPIKO, Un TePLoTPEPOEVO (aTaBEPD) TEAKO oNHElD, Ot
supramassive, ol onoieg €& opiopov £yovv paleg peyardtepeg amd ) péytotn palo Tov un
TMEPLOTPEPOLEVOV AGTEPA VETPOVIWV, OgV £X0VV €va oTabepd Tehd onpeio Kot katd cuvERELa, 1
Katéppevon o€ PeAav] o etval avamdPeLKT. Q0TO00, TPEMEL VO ONUEIWDE] OTL 1] KOTOOKELN
aKoAoVOIOY normal Kot Kopiog supramassive ivol Lo TEPITAOKT d1001KAGI0 GTO TAAIGLO TNG
vevikng oyetikottog (Cook et al., 1994b).

Enmpoofétmg, yivetal cuotnpatiky HeAETN TG pOTNG AdPAVELOG, HI0G TOGOTNTAG TOL ailel
ONUOVTIKO POLO GTIG IBIOTNTEG TV TEPIOTPEPOLEVOV AGTEPOV VETPOVIOV, KOL TNG EKKEVTPOTNTOG
OV UTOPEL VOL LOIG TAT|POPOPTGEL Y1 TNV TOPAUOPPMGCT] TOVG. AKOAOVODVTAG TNV TPOTYOULEV
epyacio tov Lattimer kot Prakash (Lattimer and Prakash, 2005), mapéyovyie £éva omdAVTO 0vdTEPO
Op10 TNG VYNAITEPTG TLKVOTNTAS WLYPTS PAPLOVIKNG VANG 6TO ZVUTaV, [ fAon To avdTePo Oplo
7oL emPaAAeTon amd T péyloTn Halo EVOg AGTEPO VETPOVIMV. TNV TPAyHOTIKOTNTA, Aapfdvel
xdpo o Tpoomdbela Pedtioong Tov opiov mov ey oty Avagopd (Lattimer and Prakash,
2005), pe ) gpnon evnuepopévov KE kot copmeptAapBovopéving e TepinTtmong Tov aoTepLdv
vetpovimv pe ) péytortn mepiotpon. Kieivovrag, e€etdlovrar ot emmtdoeig e KE otov deiktn
médnong taov ndicap. Ectialovpe kupiong o tipég kovid oty cuyvotnta Kepler (70% wot
TEPLOCOTEPO) OOV 0 deikTng TEdMONG apyilel va emnpedleton omd ™ pndlo npepioc.

Qo1660, N TPOSPATN TAPATHPNOT PAPVTIKOV KUUATOV OO EVO CLYYOVEVOUEVO SVLOIKO
ovotnua aotépav vetpoviov (GW170817; Abbott et al. (Abbott et al., 2017)) eppdvice o
véa, TOAD OTLLOVTIKY YT Y10, VO SIEPEVVICOVUE KOt VO PEATIDGOVE TIG YVAOELS LLOG Y10, TV
KE pe moAdovg tpémove. Zuykekpyéva, 1 KE 1660 ¢ yoypng 660 kot g Oeppng mopnvikng
VANG emnpedlel oNUOVTIKG T SUVOLIKT JadtKaGio TG PAoG TPV KOt LETA TN GLUYYXDVELGN
TOV SVOSIKAV AGTEP®V VETPOVI®V, TOL 001 Y0OV o€ £va Beppd voAeypa. Avt n Sadwacio
mepthapfdvel eniong ™V TOAPPOLIKT TOAMCIUOTNTA KOTA TV TEPIGTPOPT EVOS SLASIKOD
ovotuotog. EmmAéov, pHetd tn cuyydvevon, n péytot evotadng pala, 1 teplodog mepIoTPOPNS
Kot 1 ddpreto {ong Tov vroAeippoTog e&aptdvral oe peydAo Pabpd and Tig 131N TEG TNG TUKVNG
VANG og vymAn Beppokpacia kot gvipomia. Ewducotepa,  e£€MEN Kot T0 BV TeEMKS GTASI0
Tov voAgippatog etvat gvaictnta oty KE, cvumepilapfavopévav (o) g xpovikng KAILOKOG
Yo T PopuTiKn KaTdppevon o€ po pedavi omn, (B) g mboavomta petdfaons edong oe GAAOLS
Babpotg erevbepiag (Vepdvia, KOLAPK KAT.), TOL UTOPEL VO OONYNOOVY GE KATAPPEVOT GE
pehov omn kot (y) tng dnpovpyio evog 6ioKov yOP® amd To VIOAAELM, TV EKTOEEVGT KaL TNV
EKTOUTN VETPIVOV.

Ta mponyovpeva xpoVIa, TPOTOTOPLOKT EPEVVA TPOYLATOTOONKE Yo TN neAéTn g Oepung
KE ywo aotpo@uoikég epoppoyés, cvumeptrapfavopévev tov peretdv tov Bethe et al. (Bethe
et al., 1979), Brown et al. (Brown et al., 1982), Lamb et al. (Lamb et al., 1978), Lattimer &
Ravenhall (Lattimer and Ravenhall, 1978) kot Lattimer (Lattimer, 1981). Mg v ntdpodo tewv
£1®V, o1 o ypnoomoinpévol KE g ving Bepudv actépmv vetpoviov ftav (o) To LovTELO
VYPOY TOTOL GTAYOVAG TOL KoTooKeVdoTnKe and tov Lattimer & Swesty (Lattimer and Swesty,
1991) kot (B) awtd amd tovg Shen et al. (Shen et al., 1998), 610V yPNOILOTOIEITAL TO CYETIKIGTIKO
povtédo pécov mediov. Apyodtepa, ot Shen et al. (Shen et al., 1998) enéktetve ) pehétn ToVg
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v va dnpovpynoet KE mopnvikng YAng yua éva eupd oo 0eppokpacidv, TUKVOTHTOV Kot
KAOOUATOV TPOTOVIOV Y10 EPUPLOYES GE GOVTEPVOPO, GLYYDVEVLGELS ACTEPMY VETPOVIMV KOt
TPOGOUOIDGELS CYNUATIGHOD LEAAVAOV OTIMV (PTCLLOTOLDVTOS ETIONG VO TANPEG OYETIKIGTIKO
péco medio (Shen et al. 2011).

Ot Wellenhofer et al. (Wellenhofer et al., 2015) gpgvvnoav v eEdptnon amd v TUKVO-
o Kot T Oeppokpacio g EAeVOEPTG CLUUETPIKNG TUPNVIKNAG EVEPYELNG XPTCLOTOLDOVTOG
LKPOGKOTLKG TUPTVIKA SuVaLKE dDO KoL TPLOV COUATMV TOL KATACKELAGTIKAV 0o T fewpia
nediov Chiral. Or Constantinou et al. (Constantinou et al., 2014, 2015) mapiyoyav pio Ogppn KE
KOTAAANAN Y10 Vo TEPLYPAYEL TIG 1O10TNTEG TV GOVTEPVOPD KOt TV BEPUDY OGTEP®V VETPOVIMV.
O emdpaoeig g Oepprokpaciog otnv KE tov actépa verpoviav diepevviOnkay 6to mhaicto g
Bempiag tov nediov Chiral amd Tovg Sammarruca et al. (Sammarruca et al., 2020). Ot 1010t TEG
g Bepung S—evotabovg mupnvikng VANG, yxpnopomowdvtog KE mov mpoépyovral and v
nmpocéyylon Brueckner-Hartree-Fock og menepacpévn Oeppoxpacia, govv napacyebei oe pio
oelpa epyaocidv (Nicotra et al. (Nicotra et al., 2006); Burgio & Schulze (Burgio and Schulze,
2010); Baldo & Burgio (Baldo and Burgio, 2016); Fortin et al. (Fortin et al., 2018); Lu et al. (Lu
et al., 2019), (Li et al., 2021); Figura et al. (Figura et al., 2020); Shang et al. (Shang et al., 2020);
Wei et al. (Wei et al., 2020)). Ot Raithel et al. (Raithel et al., 2019) avénto&av €va poviélo mov
EMTPEMEL TNV ENEKTOCT] OTOLOVINTOTE YVYPNS voukAeovikng KE, cupmepihappavopévoy tov
tunuotikdv moivtpondv KE, oe avbaipetn Oeppokpacio kot kKAdopato TpoTovioy yio xpion
G€ VTOAOYIGUOVS Ko aplOUNTIKES TPOCOUOIDGELS AGTPOPVOIKMY QUIVOUEVOV.

Mepartépw, puo Aemtopepnc LeAETn g eEEMENG TV TPOTACTEP®V VETpOViDY TpoPfArépbnke
amd Tovg Pons et al. (Pons et al., 1999) xan Prakash et al. (Prakash et al., 2001). Ot cvyypageig
gotiaoav oTn Oeppikn Kot YNk e£EMEN TG YEVYIONG TOV OGTEPMVY VETPOVIMV YPNGILOTOIDVTOG
GUYKEVTIMGELG VETPIVOV VITOAOYICUEVEG e GuvETELn e TNV vrokeipevn Tupnvikn KE (Pons et
al. (Pons et al., 1999)). T o Tpoéceatn avackonnon g Bepung KE g mokvig ¥ANg kot t@v
aotépav verpoviov, deite Lattimer & Prakash (Lattimer and Prakash, 2016).

To tedevtaio 40 ypovia, apketn Bempntikn Epgvva £xel aplepbel ot pHeAéTn TV SL0d1KO-
OLOV TOV PACEDY CLYYDOVELCNG KOl LLETA TN GLUYYDVELCT EVOG GLUGTNLOTOG dVASIKOD ACTEPQ
verpoviov, Kot £xel emtevyfel onpovtikn Tpdodog. QotdG0, VLAPYOVY TOALA GyeTKd (nTHoTa
OV TOPAUEVOVY AADTO. 1] TOVAGYIGTOV VIO EETaom. Tevikd, n avapopd oty eEEMEN TOL VITOA-
Aeippatog mepthapPdavel kKupimg tov ¥povo Katdppevong kot ) uéla katweiiov. Emmiéov, n
mhavoTTa PETAROONG PAONC GTO ECMTEPIKO TOV VIOAEILOTOS UTOPEL VO ETNPEAGEL TO GO
TOV EKTEUTOUEVOV PapUTIKAOV KOUATOV. Akoun, Bépata mov eEetalovTot eivat emiong o1 10T TES
ekTOEEVOMNG O10KOL KOl EKTOUTNG VETPiveV, 01 0oieg eivat evaionteg ot ypnoyonotovpevn KE
(Yo extetapévn ocvdntnon kot epapuoyéc, PAéne Perego et al. (Perego et al., 2019)). Opiopévec
TPONYOVUEVEG EpYaTies Teptlapfavovtal eniong otovg Bauswein et al. (Bauswein et al., 2010),
Kaplan et al. (Kaplan et al., 2014), Tsokaros et al. (Tsokaros et al., 2020), Yasin et al. (Yasin et al.,
2020), Radice et al. (Radice et al., 2020), Sarin kot Sen (Sen, 2020).

Aéilel va avapépovpe 6t 1 Bewpia g kPavtikng ypopodvvaptkng (QCD) mpofiénet ™
ouveylopevn LeTaPooT TG adPOVIKNG VANG GE LLE TEPLOPIGUEVT] DA KOVEAPK OE OPKETO VYN AN
mokvoTNTo (Alyeg POpEG TNV TLKVOTNTA KOpeGLoD). Kabdg ta aotépia vetpoviav mapéyovv Eva
TAOVG10 TTEGI0 SOKILMDV Y10 KPOOKOTIKES Bempieg TUKVNG TUPNVIKIG VANG, O GUVOVACUOG OVTNG
™G LEAETNG LE TO TEPOLATIKA dEGOUEVA OO VIEPCYETIKIOTIKEG GLYKPOVOELS Bapémv 1OvTmv (0
Yxetkog Emtoyvuvmc Bapéwv Iovimv oto Brookhaven kot o Meydhog Emitayvving Adpoviav
o010 CERN) pmopei va fondnoet onpavtikd ot Pertioon tov yvocewov pag yuo m feopia QCD
(Baym et al. (Baym et al., 2018)). Qo1600, T0 TPOPANHO TG DTTapéng eAebBepng VANG KovdpK
GTO E0MTEPIKO TOV AGTEP®V VETpovimv Tapapével. EmmAéov, | epodvion mepiepyov adpoviov
(vmepoviov, KAm.) Tepimov ot SmAdcio TLKVOTNTA KOPESHOV odnyel og pia a&toonueinm
opardtnTo g KE ko og yopnmAés Tipég palog aotépmv VETPOVI®mV, LOKPLH 0o TV TOpOTHPNOT).
Avt6 10 TPOPAN O emtonpaiveTtan g To Talh vepovioy. DVIKE, VTAPYXOVY Kot GALEG HEAETEG
OmOL 01 cVLYYpUPEic MAwoav 6T 1 Bedprnomn Tov vepoviov oty KE dev épyetar oe avtibeon pe
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Tig TPpoPAEYELS pag ToAD vymAN g nalag aotépa vetpoviov (PAéne Chatterjee & Vidana (Chatterjee
and Vidafia, 2016); Li et al. (Li et al., 2020)).

[pocearta, vrootnpiydnke 6TL N TPOGPUTN TAPATIPNON PAPLTIKOV KOUATOV 0O GLYYOVED-
GE1G 0oTEPMV VETPOVIOVY Ba pmopodoe vo pigel pmg oty TOavOTNTO TV AdPOVImY VO, KIVOUVTOL
o€ o petapacn edong kovdpk (Annala et al. (Annala et al., 2020)). Ot cuyypooeic SnAocov
6TL €6V TO GOULOPPO OPLO GTNY TN TG TEDTNTOG TOL HXOV, ¢, /c < 1/+/3, dev mapaProcte
évtova, T0Te 01 Pupeis 0oTEPEG VETPOVIDV UTOPEL VAL £XOVV LEYAAOVG TUPIVEG KOLAPK. L& OLTHV
™V mepinTmon, Tpémel va ANeBodv vITOYN ONUAVTIKEG EMTTMGELS GE CLYYWOVEVGELS ACTEPDV
VETPOVIOV LLE TOVAAYLOTOV éVvav TEPACTIO cuppetéyovta (Annala et al. (Annala et al., 2020)).
Qo1660, 6TV TOPOVGO. EpEVVa, 1) TEPiTTOON TPOcheT™V Pabumy erevbepiag (VTepoVIa, KOVAPK
KAT.) 6T0 E0MTEPIKD TOV AGTEPOV VETpOViMVY dev e&etdleTal.

Qg ovvéyela, TPAYUATOTOIEITOL 1] SIEPEVVTOT] TOV LAKPOCKOTIK®VY WO10TNTOV TS Oeppng
TUPNVIKNG VANG KOl AOTEP®V VETPOVIOV. ZuyKeKPUEVa, g@aprolovpe Eva HOVTELO OmOTEAE-
oUaTIKNG aAANAETidpaoTg mov e&apTdTal omd v opun (MDI), 6mov ta Beppikd amotedéopoto
UTOPOLV Vo LEAETNHOVV TAVTOYPOVO OTO KIVITIKO LEPOG TNG EVEPYELNG KOL GTNV OAANAETIOpaoN).
To mAeovEKTN LA TOV TOPOVTOG LOVTELOV, GE GUYKPLON e AAa, etvar 0Tt Ta Beppikd pavopeva
€100 yovTol Pe avtoouvent| Tpomo. Ewdwdtepa, epappdlovue avompd Toug 0EpHOSVLVOUKOVS
VOUOLG TTOL TTEPLYPaPovY TNV Beppn Tukvy Tupnviky VAN. Emmdéov, avtod to poviého pnopei va
emextobel Tpokeévov vo tpotomom et n akapyio g tpotevopevng KE topapetponoidviog
GOOTO TNV CLUUETPIKT TVPNVIKY] evEpyeta. A&ilel va onuewwbel 6T Evag peydrog apBuoc KE
Bepung TUPNVIKNAG VANG KOl OCTEPOV VETPOVIOV Y10 AGTPOPVCIKES EQUPLOYES EYOVV ELPOVL-
o1el pe TV TAPOodo TOV ETMV, XPCLOTOLOVTAS O1dpopa BempnTikd LOVTELN KOl TPOCEYYICELC.
Qo01060, TO. TEPIGGOTEPQ OO AVTA ElvoL ap@lofnotpe pe Ty évvora 6Tt To. OgppiKd eavopevo
dev mepropPavovtor otny yoypn KE pe avtocuvenn tpdno aAld poddov pe texvnto. Avto to
onpeio €xet oM onpuelwdel otovg Constantinou et al. (Constantinou et al., 2015). Znv apaypo-
TIKOTNTA, TO TaPOV HovTELO elonyOn amd Tovg Gale et al. (Gale et al., 1987) mpokepévov va
eketaotel 1 enidpacn Tov MDI ot pon opung Tov cuykpovsewv Bapiwv Wdvimv. QoT1600, Ie
TNV TAPOSO TV ETMV, TO LOVTELD EXEL EPAPUOCTEL EKTEVMG Y10, TN UEAETN TOV WOOTATOV TNG
Youypng Ko Ogppng mupnvikng OANG Kot aGTEPMOV VETPOVIMV (Y10l Lo OVOGKOTN G TOL HOVTEAOD,
BAéne Prakash et al. (Prakash et al., 1997); Li & Schr 6der (Li and Schroder, 2001); Li et al. (Li
et al., 2008)).

Katémw, mapdyetot évo chvoro Beppoduvapikd evataddv 1I600EpIIKOY Kol IGEVTPOTIKOV
KE, pe Baon to mapapetporompévn yoyxpn KE. O tehids Log 6KOmog eivat 1) Epoproyn Tov
npoPrendpevav KE yio puo extevi) LEAETN GYETIKA LLE TIG LOKPOOKOTIKES 1010TNTES (GUUTEPIATLL-
Bavopévng kupiomg g pnadag kot g axtivag, e pomng adpavetas, g mapapétpov Kerr, kAm.)
1060 Gg [N TEPIOTPEPOUEVO OGO KOl OE TEPIOTPEPOLEVO 61N cvyvotnTo Kepler aotépa veTpo-
viov, KoOOG Kol GE TPOTUCTEPES KOl VITOAEILUATA GUYYDVEVGTG AGTEPOV VETPOVI®V. AVOULLE
Wwitepn Tpoooyn otig akolovbieg otabepng Papvovikig palag kot e&etalovpie Tov 1310TVTTO
poro ¢ mapapétpov Kerr. TELOG, apiepdvovile Eva HEPOG YioL TN LEAETT LEPIKDV JLOOIKAGIHV
LETA T GLYXMDVELOT, OIS TO OepLd, TaYEMS TEPLOTPEPOUEVO DITOAELLL Kot 1) bl KaToeAiov,
Kot To GLVOEOVE PE TIG TpokVTTTOoVvoEeG KE.

TéNog, 1 €pevVal EMKEVTIPMVETAL GTNV EVGTADELD TOV CYETIKIOTIKOV AGTEPOV TTOV £)EL [LE-
AetnOel ektevadg oto mopehB6v (Chandrasekhar, 1964a,b; Friedman and Stergioulas, 2013;
Glendenning, 2000; Haensel et al., 2007; Harrison et al., 1965; Shapiro and Teukolsky, 1983;
Weinberg, 1972; Zeldovich and Novikov, 1978), énov éyouvv ypnoiporombel didpopeg mpoceyyi-
GELG Y10L TNV AVTILETAOTIOT 0 TOD TOL TpofAnpotog (Bardeen et al., 1966). Zvykekpipéva, pmopodv
mpdTa va Awbovv ot eElodaoeig TOV (Oppenheimer and Volkoff, 1939; Tolman, 1939) (ot omoieg
mapéyouvv T dpopeon evotdbdetag) site yia apBuntikég KE eite yo v npoonafeia ebpeong
OVOALTIKOV AGEMV. Xe KAOe TepimTman, Kot o1 Vo AVGELG 0dNyovV 6g dmelpo aplfud KoTaoTd-
oemv. Agdtepov, po mboavotmra eivar n yprion tov kprenpiov tov Chandrasekhar (Chandrasekhar,
1964a,b) mpokeipévou va pocdlopiotei, o€ kGO mepintmon, N evoTabNG KOTAoTACT KAOMOG Kot
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1 demapn petagd gvotaboig kot actafovg KaTdoTaoN .

Aéilel va onuewwbei 6t yio va, g€aydyovpe por AOon He PUOIKO EVOLOQEPOV, TPETEL VO
Moovpe T16 &lomoelg mediov Tov Atvata ypnoylonotdvrag pio peoiiotikn KE tov ecmtepikod
peLGEToV. QOTOGO, VIAPYOLVY UEPIKEG AVOAVTIKEG ADGELG LE PLVGIKO EVOLAPEPOV TTOV UTOPEL VO,
Bonbncovy oty elcay®YN Kot TNV KaB1EPMOON KATOLOV KABOMK®OV TPOGEYYICEWDV.

EmumAéov, og pia dedopév mukvoTnTa, VITAPYEL Lo GNLOVTIKT TOPALETPOS OV ovoudletot
adtopatikog deiktng kot cvykekpipéva, yapokmmpiler v axopyio KE (Bludman, 1973a,b;
Gaertig and Kokkotas, 2009; Glass and Harpaz, 1983; Haensel et al., 2007; Harrison et al., 1965;
Hiscock and Lindblom, 1983; Ipser, 1970; Lindblom and Detweiler, 1983; Misner et al., 1973). To
kpurnpio aotabetag tov Chandrasekhar (Chandrasekhar, 1964a,b), e€aptatar oe peydro Pabpod
and autv Vv Tapdpetpo (adPaticog deikng). 'Eva and to kopa kivitpo g Tapodoag
epyaciag eival va g&gtdoet T dvvatdTTa EMPOANG TEPLOPIOCU®V oTIS pearoTikés KE tawv
acTEPOV VETPOVIOV pEc® TG cLVONKNG aotdbeiag tov Chandrasekhar.

Yuykekpléva, ypnoiponoteital o ektetapévn opdda peaotikdv KE mov PBacilovtot
og d1apopa Bempnricd Topnvikd poviéra. Ta cuvtopevpéva ovOpATA QVTAV TOV EEICHOCEMV
katdotaong eivar: MDI (Moustakidis and Panos, 2009; Prakash et al., 1997), NLD (Gaitanos
and Kaskulov, 2013, 2015), HHJ (Heiselberg and Hjorth-Jensen, 2000), Ska, SkI4 Chabanat
et al. (1997); Farine et al. (1997), HLPS (Hebeler et al., 2013), SCVBB (Sharma et al., 2015),
BS (Balberg and Shapiro, 2000), BGP (Bowers et al., 1975), W (Walecka, 1974), DH (Douchin
and Haensel, 2001), BL (Bombaci and Logoteta, 2018), WFF1, WFF2 (Wiringa et al., 1988),
APR (Akmal et al., 1998) kot PS (Pandharipande and Smith, 1975). Ola avtd tkavorolodv, TOLAA-
¥1oTov oplakd, to mapatnpoduevo oplo twv M = 1.97 £+ 0.04 My (PRS J1614-2230 (Demorest
et al., 2010)) xov M = 2.01 £+ 0.04 My (PSRJ0348+0432 (Antoniadis et al., 2013)). Zwnv
TPOYLOTIKOTNTOL, QLT TN OTLYUN, Ot o 1oyvpoi meplopiopol otig KE tov actépwv vetpoviov
Bacilovtot oTIg HETPNOELS TOV KATMTEPOV 0piov TNG HEYIOTNG HLALOG TOVG. AVOTNPA LADVTOG,
ot mpotewopeves KE mov dev avamapdyovy v vyniotepn pétpnon g Halog Tov aotépov
VETPOVIMV, TPEMEL VOL ATOKAELGTOVV.

H mopovca épevva eTKEVTPOVETOL OTNV EEAPTNCT TOV OMOTEAEGUATIKOV KPiGIov adiopart-
KoV delktn amd Tovg cvUTAYNG AoTEPES VETpovimy, Yia kGOe KE. Ectidlovpe kuping ot Siemapn
peta&d gvoTafovg Kot 0oTafobc KATUGTOONG IOV OVTIGTOLXEL 0TV KATAGTACT HEYIoTNG Halag.
Avt 1 meployn givat ToAd onpavtiky apod oyetiletat GUeESa He TO TUNHA VYNANG TUKVOTNTOG
¢ KE tov aotépa verpovimv. Avtd 1o {mnpa mopapévet £va avorytod tpopinua. Emmiéov,
mpoteivovpe po tpdcbetn pébodo yia tov tepropiopd tov KE pe t fonbeia akpifav petprcemv
™g néyiotng nalog /Kot cupmayoTNToG 0oTEP®V veTpoviav. TElog, kdvoupe o tpoonddeio
VO GUOYETICOVUE T LEYIOTN GLYVOTNTA TEPIGTPOPNG fmax HE TOV Kpioio adtafatikd deiktn
KOL TIG LOKPOOKOTIKEG WOIOTNTEG OV AVTICTOLOVV OTN KOTAoTAo HEYIoTNG HAlag evog un
TEPLOTPEPOUEVOL (OTATIKOD) aoTEPA VETPOVimV (cvumepiiapfovouévng g péytotng pnalog

M3 g avtictoyng axtivag RS2 kot g mapapétpov copraydtnag B54) ol dote va

max? max
VTOSEIEOVE TG O1 TAPATNPOIUEG LETPTOELS OOTEPOV VETPOVI®MV LE VYNAN TTEPIGTPOPN UITOPEL

va emairovy Teploptopovg oty KE.
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CHAPTER 1

Introduction

The ashes of luminous stars are the endpoint of stellar evolution and comprise white dwarfs,
neutron stars, as well as black holes. Whichever of these objects is formed at the end of the life of
a luminous star, the compact object will live unchanged from the state that was formed. Compact
stars are different from ordinary stars, considering that they do not burn nuclear fuels, so they
are not supported by thermal pressure against the pull of gravity. In particular, white dwarfs are
supported by the degeneracy pressure of electrons, neutron stars by the repulsive interactions
between nucleons, and black holes are collapsed objects where no matter is needed for their
solution. Additionally, while white dwarfs can take different forms only in the dominant nuclear
species, neutron stars can support several forms, including hyperon, hybrid, strange, and quark
matter. In the last case, that of a black hole, which is probably the fate of the most massive stars,
an inaccessible region in spacetime is formed (Glendenning, 2000; Weber, 1996, 1999).

In the particular case of neutron stars, all four fundamental forces (strong, weak, electromag-
netic, gravity) involve and represent a way for the universe to manifest its densest objects with
an internal structure. Neutron stars find their position among the most amazing astrophysical
objects as they combine nuclear physics with general relativity (for a shematic presentation
of neutron star formations see Figure 1.1). The former introduces the equation of state (EoS),
which is mandatory for describing the fluid interior. At the same time, the final provides the
Tolman-Oppenheimer-Volfkoff (TOV) equations where the EoS is applied. Their combination
leads to the ultimate neutron star structure. However, it must be stressed that the EoS is still
unknown, both from a theoretical and an experimental point of view. The unknown EoS has a
significant effect on the bulk neutron star properties. To eliminate the uncertainty of the EoS, we
rely on the observational data of isolated neutron stars and binary neutron star mergers, neutron
star-black hole systems, supernova explosions, etc.

The existence of neutron stars is inferred by the occurrence of supernova explosions and X-ray
binaries where the emitted radiation, as a consequence of a matter accreted from a companion star,
provides an indicator. The first observation of a neutron star was in the form of a pulsar, which is
a rapidly rotating and highly magnetized neutron star. These objects are powered by beamed
magnetic dipole radiation stemming from the amount of lost rotational energy. In particular, the
brief history of the discovery to observation is (Lattimer, 2015)

1920: Rutherford predicts the existence of the neutron.

1931: Landau anticipates single-nucleus stars.

1932: Chadwick discovers the neutron.

1934: W. Baade and F. Zwicky (Baade and Zwicky, 1934) suggest that neutron stars are
the end product of supernovae.

23
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1939: Oppenheimer and Volkoff (Oppenheimer and Volkoff, 1939) find that general
relativity predicts a maximum mass for neutron stars.

1964: Hoyle, Narlikar and Wheeler (Hoyle et al., 1964) predict that neutron stars rotate
rapidly.

1965: Hewish and Okoye (Hewish and Okoye, 1965) discover an intense radio source in
the Crab nebulae, later shown to be a neutron star.

1966: Colgate and White (Colgate and White, 1966) perform simulations of core-collapse
supernovae resulting in formation of neutron stars.

1967: C. Schisler discovers a dozen pulsing radio sources, including the Crab, using
classified military radar. He revealed his discoveries in 2007. Later in 1967 Hewish,
Bell, Pilkington, Scott and Collins (Hewish et al., 1968) discover PSR 1919+21 (Hewish
receives 1974 Nobel Prize).

1968: Crab pulsar discovered (Piddington, 1969) and pulse period found to be increasing,
characteristic of spinning stars but not binaries or vibrating stars. This also clinched the
connection with supernovae. The term “pulsar” first appears in print in the Daily Telgraph.

1969: “Glitches” observed (Radhakrishnan and Manchester, 1969; Reichley and Downs,
1969), providing evidence for superfluidity in the neutron star crust (Baym et al., 1969).

1971: Accretion powered X-ray pulsars discovered by the Uhuru satellite (Giacconi et al.,
1971).

1974: The first binary pulsar, PSR 1913+16, discovered by Hulse and Taylor (Hulse
and Taylor, 1975) (Nobel Prize 1993). It’s orbital decay is the first observation (Taylor
et al., 1979) proving existence of gravitational radiation. Lattimer and Schramm (Lattimer
and Schramm, 1974) suggest decompressing neutron star matter from merging compact
binaries leads to synthesis of r-process elements.
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Figure 1.1: The main stages of evolution of a neutron star (Lattimer and Prakash, 2004).
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* 1982: The first millisecond pulsar, PSR B1937+21, discovered by Backer et al. (Backer
et al., 1982)

* 1996: Discovery of the closest neutron star RX J1856-3754 by Walter et al. (Walter et al.,
1996).

* 1998: Kouveliotou et. al. discovers the first magnetar (Kouveliotou et al., 1998).

Neutron stars can be considered giant nuclei with N about 10°7. Delving into the neutron star
structure, we come across five major regions, that are: (a) the inner core, (b) the outer core, (c) the
crust, (d) the envelope, and (e) the atmosphere (Lattimer, 2010, 2014). Starting the description
from the outer layers, the atmosphere of a neutron star has a thickness of ~ 1 cm, controls the
observed spectral energy distribution, and shapes the emergent photon spectrum. Moving inside,
we meet the envelope, whose role is thermal insulation. It influences the transport and release of
thermal energy from the star’s surface at a crucial level. Actually, the star’s temperature is defined
through the particular composition of its elements, i.e., stars with a hydrogenic atmosphere appear
cooler than those with heavy-element envelopes. The regions mentioned above contain matter in
the form of plasma. Afterward, when we pass through the envelope, the crust appears. The crust
extends for ~ 1 —2 km and is primarily formed by nuclei. To be accurate, the dominant species of
nuclei depend on the density. Specifically, it ranges from °6 F'e for matter with densities less than
about 10° g cm—3 to nuclei with mass number about 200. The proton fraction at the crust-core
interface at n ~ ng/3, where ng = 0.16 fm—3 denotes the saturation density, spreads between the
values (0.1 — 0.2). We note here that such extremely “rich” nuclei cannot be observed in the
laboratory, but rare-isotope accelerators could create some of them. As we move through the
crust, at the time the density meets the “neutron-drip” density, n,g = 4 x 10'! g cm =3 (where the
neutron chemical potential is zero), neutrons leak out of nuclei. Considering the latter, at higher
densities, most matter resides in the neutron fluid. Reaching the crust-core interface, nuclei
are so closely packed that, in a way, they “virtually” touching. However, it could be at lower
densities that the nuclear lattice turns “inside-out” and forms a lattice of voids, which eventually
squeezed out at densities near ny. At high enough densities, starting at 0.1 ng, the so-called “pasta
phases” appear, where deformations become extreme and spherical nuclei transform into rods or
plates. Furthermore, at this boundary, where the density is roughly ps/3, with ps approximately
equal to 3 x 10'* g cm™3 being the nuclear saturation density, the inhomogeneous phase with
nuclei transforms to a homogeneous phase of nucleons in the outer core. In addition, the matter
is charge-neutral, leading to an equal number of protons and electrons. In addition to protons
and electrons, muons appear for higher densities than p;. Finally, considering the inner core’s
composition, the existing knowledge contains high uncertainties. Thus, it could range from an
extension of the outer core and be primarily nucleonic, or it could be a mixture of nucleons and
strange matter in the form of hyperons or deconfined quarks. Nevertheless, in extreme cases,
some theories suggest that nucleons may entirely give their place to deconfined quarks at the
star’s center, creating a vastly different star. The schematic presentation of the internal neutron
star structure is displayed in Figure 1.2.

The extreme characteristics that rule neutron stars place them in a different physical principles
ground, which are required for their understanding than the rest of stars. In particular, most of
the stars can be fully described in Newtonian Gravity, considering the low-energy and atomic
nuclear physics. The conditions, in this case, are essentially known in the laboratory. Neutron
stars push matter to such extremes of density that nuclear and particle physics are necessary
for their accurate description. Newtonian hydrostatic equilibrium, which is adequate for most
stars, breaks down for neutron stars. Probably the biggest defect is the inability to predict the
existence of the maximum mass. In addition, Laplace demonstrated that the escape velocity,
/GM /R, could eventually exceed the speed of light. The former led to the utmost importance
of compactness limits described by Laplace. However, the introduction of general relativity
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A NEUTRON STAR: SURFACE and INTERIOR
PY Swiss ot
CORE: V
Homogeneous|
Matter
Inner crust:
ion lattice, soaked in

Thin atmosphere: superfluid neutrons

H,He,C... \
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Figure 1.2: Internal structure of neutron stars, where the major regions are shown, in two
representatives schematic presentations (Arzoumanian et al., 2009; Lattimer, 2010, 2014; Lattimer
and Prakash, 2004).

imposed a limit on the mass along with a limit for the maximum density inside any neutron star.
Thus, it leads to a limit for the ultimate energy density of cold, baryonic matter in our universe.
Concluding, the intense concentration of matter in neutron stars can be described only in General
Relativity, Einstein’s theory of gravity which alone describes the way the weakest force in nature
arranges the distribution of the mass and the constituents of the densest objects in the universe.

The overall structure of neutron stars is controlled through the TOV equation, as already
mentioned. Their composition does not affect the aforementioned equations. Specifically, the
TOV stellar structure equations provided through general relativity are expressed as

dP(r)  GE(r)M(r) (1 N P(r)) (1 +47TP<7">7"3> (1 2GM<T>>_1, (1.1)

dr c2r? E(r) M (r)c? c2r
dM(r)  4mr?
S =TE), (1.2)

where P is the pressure, £, which is equal to pc?, is the energy density, and M is the gravitational
mass interior to the radius r. The TOV equations cannot always provide physical solutions. Thus,
in order to have physical solutions, these equations have boundary conditions. More precisely,

» For r = 0, all gradients and M are zero,
e P = 0 at the surface where r = Ry and M = M ay.

An EoS in the form P(£), which arrives from nuclear physics, describing all the layers of a
neutron star, dictates a unique mass-radius curve, as shown in the Figure 1.3.

Figure 1.3 displays the one-to-one correspondence of the EoS (a relation between pressure
and energy) with the mass-radius curve. In fact, Figure 1.3 shows the connection of nuclear
physics with astrophysics. Two general features can be extracted: (a) it is a consequence of
general relativity that maximum mass exists for any causal' EoS. It is widely known that the

! Causality is the condition that the speed of sound, \/dP/dr, never exceeds the speed of light.
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Logyo p (MeV/fm?)

Figure 1.3: The pressure dependence on the energy density and the corresponding mass depen-
dence on the radius for a specific EoS. The arrows show the one-to-one correspondence of the
pressure/energy to the mass/radius (Lattimer, 2012).

term maximum mass does not exist in Newtonian gravity, and (b) the nature of the EoS dictates the
slope of the mass-radius curve. This can be seen from the dimensional analysis of the structure
equations, ignoring of course the general relativistic terms.

Determining the maximum neutron star mass is a long-standing issue in astrophysics since
it is directly related to identifying black holes and the unknown behavior of nuclear matter
at high densities. Until now, the observation of non/slow-rotating neutron stars has provided
severe constraints on the dense nuclear matter through their maximum possible mass. The
most massive neutron stars measurements include: (a) the PSR J1614-2230 (M = 1.97 £+
0.04 Mg) (Demorest et al., 2010) (or from the recent elaboration of the observation M =
1.928 £ 0.017 M, (Fonseca et al., 2016) and also M = 1.908 + 0.016 M (Arzoumanian et al.,
2018)), (b) the PSR J0348+0432 (M = 2.01 £ 0.04 M) (Antoniadis et al., 2013), (c) the
PSR J0740+6620 (M = 2.14%050 M) (Cromartie et al., 2019), and (d) the PSR J2215+5135
(M = 2.27f8:g M) (Linares et al., 2018). In addition, there is a detailed study concerning the
spin frequency of rotating neutron stars (for a review, see Refs. (Patruno et al., 2017)). The fastest
rotating pulsar found is the J1748-244ad with a spin frequency of 716 Hz (Hessels et al., 20006).
Nonetheless, the issue is still open: why we have not observed pulsars with higher values of
frequency which predicted from the majority of theoretical models? And even more, what limits
the spin frequencies of millisecond pulsars and why? (Prakash, 2015). Future measurements of
the moment of inertia (Bejger et al., 2005) and Keplerian frequency may answer these questions
by considerably improving our knowledge of the properties of maximally-rotating neutron stars.

The effects of the EoS on the properties of rotating neutron stars (see Refs. (Paschalidis
and Stergioulas, 2017; Stergioulas, 1998) for introduction and relevant bibliography) began
to gain ground almost 30yr ago from Shapiro, Teukolsky, and their colleagues (Cook et al.,
1992, 1994a,b,c; Shapiro et al., 1989). A significant contribution to these issues had also been
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made by Friedman and his colleagues (Friedman and Ipser, 1987; Friedman et al., 1986, 1988,
1989; Koranda et al., 1997), Haensel and co-workers (Haensel and Zdunik, 1989; Haensel
et al., 1995, 1999; Lasota et al., 1996; Salgado et al., 1994a,b), as well as Glendenning and his
colleagues (Glendenning, 1992; Glendenning and Weber, 1994; Weber and Glendenning, 1991;
Weber and Glendenning, 1992). Rapid rotation and its effects on the EoS have also been studied
in Refs. (Abramowicz and Wagoner, 1978; Hashimoto et al., 1994; Iida and Sato, 1997; Lattimer
et al., 1990; Lindblom, 1986; Shibata et al., 2000) and most recently in Refs. (Agrawal et al.,
2008; Bejger et al., 2017; Benhar et al., 2005; Breu and Rezzolla, 2016; Chakrabarti et al., 2014a;
Cipolletta et al., 2015, 2017; Dhiman et al., 2007; Haensel et al., 2008, 2009, 2016; Haskell et al.,
2018; Krastev et al., 2008; Lo and Lin, 2011; Riahi et al., 2019; Zhang et al., 2013). Moreover,
in nuclear astrophysics hot neutron stars in correlation with rapid rotation had been studied in
Refs. (Batra et al., 2018; Marques et al., 2017). In addition, maximally-rotating neutron stars in
modified gravity theories have been studied in detail by Kokkotas and his colleagues (Doneva
et al., 2013; Yazadjiev et al., 2015).

In the present dissertation, the previous fundamental work of Cook, Shapiro, and Teukol-
sky (Cook et al., 1994b), as well as the most recent work of Cipolletta et al. (Cipolletta et al.,
2015), are extended. In particular, a large number of modern EoSs (combined with a few pre-
vious ones) which all of them, at least marginally (few of them), predict the upper bound of
the maximum neutron star mass of M = 1.908 & 0.016 M, (Arzoumanian et al., 2018), while
also reproducing the bulk properties of symmetric nuclear matter accurately (for more details
see Ref. (Koliogiannis and Moustakidis, 2019)), are employed. The models of these EoSs are
phenomenological, field theoretical, and microscopic. In the category of phenomenological
models, there are the: MDI (Moustakidis and Panos, 2009; Prakash et al., 1997), HHJ (Heiselberg
and Hjorth-Jensen, 2000), Ska, SkI4 (Chabanat et al., 1997; Farine et al., 1997) and DH (Douchin
and Haensel, 2001), in field theoretical one, there are the: NLD (Gaitanos and Kaskulov, 2013,
2015) and W (Walecka, 1974) and in microscopic one, there are the: HLPS (based on nuclear
interactions derived from chiral effective field theory) (Hebeler et al., 2013), SCVBB (using
the Argonne v18 potential plus three-body forces computed with the Urbana model) (Sharma
et al., 2015), BS (Balberg and Shapiro, 2000), BGP (Relativistic pion exchange) (Bowers et al.,
1975), BL (Bombaci and Logoteta, 2018), WFF1, WFF2 (Wiringa et al., 1988) and PS (Pandhari-
pande and Smith, 1975). It must be stressed that the majority of the mentioned EoSs have been
constructed to reproduce the bulk properties of uniform symmetric nuclear matter and extend
to pure neutron matter. The extension to neutron star matter is performed with respect to beta
equilibrium. Regarding the leptonic degree of freedom, in most of them, it is considered that
the main contribution of leptons is due to electrons. All of the used EoSs adequately describe
the fluid core of a neutron star. It should also be noted that few have been applied first to study
finite nuclei. Among the number of equations that are being employed, we have constructed
two EoSs, the APR-1 and APR-2 (Microscopic model) (Akmal et al., 1998), predicted by the
Momentum-Dependent Interaction model (MDI). This model reproduces the results of micro-
scopic calculations of symmetric nuclear matter and neutron star matter at zero temperature with
the advantage of its extension to finite temperature. For the solid crust region of all the EoSs, the
EoS of Feynman, Metropolis, and Teller (Feynman et al., 1949) and also of Baym, Bethe, and
Sutherland (Baym et al., 1971), are employed.

An effort was made to systematically study most of the bulk properties of uniformly rotating
neutron stars at the Keplerian sequence (the sequence in which the maximum mass configuration
corresponds to the Keplerian frequency), including the mass, polar and equatorial radius, angular
velocity, moment of inertia, Kerr parameter, eccentricity, braking index, etc. Additionally, for
reasons of completeness and comparison, because the employed EoSs are hadronic ones, an EoS
with the appearance of hyperons at high densities (FSU2H) (Tolos et al., 2017a) and one suitable
to describe quark stars based on MIT bag model (QS57.6) (Glendenning, 2000; Haensel et al.,
2007), are also introduced.
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Furthermore, the possibility of updating the previous empirical universal relations, which
connect the Keplerian frequency with the mass and radius at the maximum mass configuration,
is explored. We systematically study the Kerr parameter dependence on the EoS and provide the
evolution of the angular momentum of a neutron star to examine the case where neutron stars are
considered progenitors of black holes. In particular, we examine (according to the terminology
of Ref. (Cook et al., 1994b)) two equilibrium sequences of rotating neutron stars, normal and
supramassive. While normal evolutionary sequences have a spherical, non-rotating (stable)
endpoint, supramassive ones, which by definition have masses higher than the maximum mass
of the non-rotating neutron star, do not have a stable endpoint and as a consequence, the collapse
to a black hole is inevitable. However, the construction of normal and mainly supramassive
sequences is a complicated procedure in the framework of General Relativity (Cook et al., 1994b).

In addition, a systematic study of the moment of inertia, a quantity that plays an essential
role in the properties of rotating neutron stars, and eccentricity, which can inform us of their
deformation, is performed. Following the previous work of Lattimer and Prakash (Lattimer and
Prakash, 2005), we also provide an absolute upper limit of the higher density of cold baryonic
matter in the Universe, based on the upper limit imposed by the maximum mass of a neutron
star. In fact, an effort to improve the bound that was introduced in Ref. (Lattimer and Prakash,
2005), by using updated EoSs and including the case of maximally-rotating neutron stars, is
taking place. Closing the section, the effects of the EoS on the braking index of pulsars are under
consideration. We mainly focus on values near the Keplerian frequency (70% and more) where
the braking index begins to be affected by the rest mass (definition has been given in a proper
section).

However, the recent observation of gravitational waves from a merging neutron star binary
system (GW170817; Abbott et al. (Abbott et al., 2017)) opened a new, significant source to
probe and improve our knowledge of the EoS in multiple ways. Specifically, the EoS of cold and
hot nuclear matter considerably affects the dynamic process of binary neutron star’s prior and
postmerger phases, leading to a hot remnant. This process also includes the tidal polarizability
during the inspiral of a binary system. In addition, after the merger, the maximum stable mass,
the spin period, and the lifetime of the remnant strongly depend on the dense matter properties at
high temperatures and entropy. In particular, the evolution and possible final stage of the remnant
are sensitive to the EoS, including (a) the time scale for the gravitational collapse to a black
hole; (b) the possibility of a phase transition to other degrees of freedom (hyperons, quarks, etc.),
which may lead to collapse to a black hole (due to softening of the EoS); and (c) the creation of a
disk around the remnant, ejecta, and neutrino emission.

In earlier years, pioneering work was done for the study of a hot EoS for astrophysical
applications, including the studies of Bethe et al. (Bethe et al., 1979), Brown et al. (Brown et al.,
1982), Lamb et al. (Lamb et al., 1978), Lattimer & Ravenhall (Lattimer and Ravenhall, 1978) and
Lattimer (Lattimer, 1981). Over the years, the most used EoSs of hot neutron star matter have
been (a) the liquid drop-type model constructed by Lattimer & Swesty (Lattimer and Swesty,
1991) and (b) the one by Shen et al. (Shen et al., 1998), where the relativistic mean field model
is employed. Later on, Shen et al. (Shen et al., 1998) extended their study to generate EoSs of
nuclear matter for a wide range of temperatures, densities, and proton fractions for applications
in supernovae, neutron star mergers and black hole formation simulations by also employing a
full relativistic mean field (Shen et al. 2011).

Wellenhofer et al. (Wellenhofer et al., 2015) investigated the density and temperature de-
pendence of the nuclear symmetry free energy using microscopic two- and three-body nuclear
potentials constructed from Chiral effective field theory. Constantinou et al. (Constantinou et al.,
2014, 2015) derived a hot EoS suitable to describe supernova and hot neutron star properties.
Temperature effects on the neutron star matter EoS were investigated in the Chiral effective
field theory framework by Sammarruca et al. (Sammarruca et al., 2020). The properties of hot
(B —stable nuclear matter, using EoSs derived within the Brueckner-Hartree-Fock approach at
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finite temperature, have been provided in several papers (Nicotra et al. (Nicotra et al., 2006);
Burgio & Schulze (Burgio and Schulze, 2010); Baldo & Burgio (Baldo and Burgio, 2016); Fortin
et al. (Fortin et al., 2018); Lu et al. (Lu et al., 2019), (Li et al., 2021); Figura et al. (Figura et al.,
2020); Shang et al. (Shang et al., 2020); Wei et al. (Wei et al., 2020)). Raithel et al. (Raithel et al.,
2019) derived a model that extends any cold nucleonic EoS, including piecewise polytropes, to
arbitrary temperature and proton fractions for use in calculations and numerical simulations of
astrophysical phenomena.

Moreover, a detailed study of the evolution of protoneutron stars was predicted by Pons
et al. (Pons et al., 1999) and Prakash et al. (Prakash et al., 2001). The authors focused on the
thermal and chemical evolution of the birth of neutron stars by employing neutrino opacities
consistently calculated with the underlying nuclear EoS (Pons et al. (Pons et al., 1999)). For a
recent review of the hot EoS of dense matter and neutron stars, see Lattimer & Prakash (Lattimer
and Prakash, 2016).

In the last 40 yr, a lot of theoretical work has been dedicated to studying the processes of the
merger and postmerger phases of a binary neutron star system, and important progress has been
achieved. However, many relevant issues remain unsolved or at least under consideration. In
general, the reference to the remnant evolution mainly includes the collapse time and threshold
mass. Moreover, the possibility of a phase transition in the remnant’s interior may affect the
signal of the emitted gravitational waves. In addition, matters under consideration are also the
disk ejecta and neutrino emission properties, which are sensitive to the employed EoS (for an
extended discussion and applications, see Perego et al. (Perego et al., 2019)). Some previous
work is included in Bauswein et al. (Bauswein et al., 2010), Kaplan et al. (Kaplan et al., 2014),
Tsokaros et al. (Tsokaros et al., 2020), Yasin et al. (Yasin et al., 2020), Radice et al. (Radice et al.,
2020), Sarin et al. (Sarin et al., 2020), Soma & Bandyopadhyay (Soma and Bandyopadhyay,
2020), and Sen (Sen, 2020).

It is worth mentioning that the theory of quantum chromodynamics (QCD) predicts the
ongoing transition of hadron matter to unconfined quark matter at a sufficiently high density (a
few times the saturation density). As neutron stars provide a rich testing ground for microscopic
theories of dense nuclear matter, combining this study with the experimental data from ultrarela-
tivistic heavy-ion collisions (the Relativistic Heavy Ion Collider at Brookhaven and the Large
Hadron Collider at CERN) may help to improve our knowledge of QCD theory significantly
(Baym et al. 2018). However, the problem of the existence of free quark matter in the interior
of neutron stars remains. Moreover, the emergence of strange hadrons (hyperons, etc.) around
twice the nuclear saturation density leads to an appreciable softness of the EoS and low values of
neutron star mass, far from observation. This problem is highlighted as the hyperon puzzle. Of
course, there are other studies where the authors stated that hyperon consideration on the EoS
is not in contradiction with the predictions of a very high neutron star mass (see Chatterjee &
Vidana 2016; Li et al. 2020).

It has been claimed that the recent observation of gravitational waves from neutron star
mergers could shed light on the possibility of hadrons moving to a quark phase transition (Annala
et al. 2020). The authors stated that if the conformal limit on the value of the speed of sound,
cs/c < 1/4/3, is not strongly violated, then heavy neutron stars may have sizable quark matter
cores. In this case, important implications must be considered in neutron star mergers with at
least one massive participant (Annala et al. 2020). However, in the present research, the case of
additional degrees of freedom (hyperons, quarks, etc.) in the interior of neutron stars is not under
active consideration. This issue will be under consideration in a future study.

As a continuation, the bulk properties of hot nuclear and neutron star matter are investigated.
In particular, we apply a momentum-dependent effective interaction (MDI) model, where thermal
effects can be studied simultaneously on the kinetic part of the energy and the interaction.
Compared to others, the advantage of the present model is that thermal effects are introduced in
a self-consistent way. Specifically, we rigorously enforce the thermodynamic laws describing
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the hot dense nuclear matter. In addition, this model can be extended in order to modify the
stiffness of the proposed EoS by properly parameterizing the nuclear symmetry energy. It
is worth pointing out that a large number of EoSs of hot nuclear and neutron star matter for
astrophysical applications have appeared over the years, employing various theoretical models
and approximations. However, most of them are questionable in the sense that thermal effects
are not included in the cold EoS in a self-consistent way but rather in an artificial one. This point
has already been noted in Constantinou et al. (Constantinou et al., 2015). Actually, the present
model was introduced by Gale et al. (Gale et al., 1987) in order to examine MDI’s influence on
the momentum flow of heavy-ion collisions. Nonetheless, over the years, the model has been
extensively applied to study the properties of cold and hot nuclear and neutron star matter (for a
review of the model, see Prakash et al. 1997; Li & Schroder 2001; Li et al. 2008).

Afterward, a set of thermodynamically consistent isothermal and isentropic EoSs are produced
based on the parameterized cold one. Our eventual purpose is the application of the predicted
EoSs for an extensive study on the bulk properties (including mainly the mass and radius, moment
of inertia, Kerr parameter, etc.) both at non-rotating and rotating with the Kepler frequency
neutron stars, as well as protoneutron stars, and neutron star merger remnants. We pay special
attention to the sequences of constant baryon mass (baryon mass is equal to rest mass) and
examine the peculiar role of the Kerr parameter. Finally, we dedicate a part to studying a few
postmerger processes, such as the hot, rapidly rotating remnant and the threshold mass, and we
connect them with the derived EoSs.

Lastly, the research is focused on the stability of relativistic stars, which has been studied
extensively in the past (Chandrasekhar, 1964a,b; Friedman and Stergioulas, 2013; Glendenning,
2000; Haensel et al., 2007; Harrison et al., 1965; Shapiro and Teukolsky, 1983; Weinberg, 1972;
Zeldovich and Novikov, 1978), where various approaches have been used in order to treat this
problem (Bardeen et al., 1966). In particular, firstly, one can solve the TOV (Oppenheimer
and Volkoff, 1939; Tolman, 1939) equations (which provide the equilibrium configuration)
for either numerically derived EoS or trying to find analytical solutions. In any case, both
solutions lead to an infinite number of configurations. Secondly, one possibility is the use of the
criterion of Chandrasekhar (Chandrasekhar, 1964a,b) in order to identify, in each case, the stable
configuration as well as the interface between stable and unstable configuration.

It is worth pointing out that in order to extract a solution with physical interest, one has to
solve Einstein’s field equations using a realistic EoS of the fluid interior. However, there are a
few analytical solutions with physical interest that may help to introduce and to establish some
universal approximations.

Moreover, at a given density, there is an important parameter that is called adiabatic index and,
in particular, characterizes the stiffness of the EoS (Bludman, 1973a,b; Gaertig and Kokkotas,
2009; Glass and Harpaz, 1983; Haensel et al., 2007; Harrison et al., 1965; Hiscock and Lindblom,
1983; Ipser, 1970; Lindblom and Detweiler, 1983; Misner et al., 1973). The instability criterion of
Chandrasekhar (Chandrasekhar, 1964a,b), strongly depends on this parameter (adiabatic index).
One of the main motivations of the present work is to examine the possibility of imposing
constraints on the realistic neutron star EoSs via the instability condition of Chandrasekhar.

In particular, an extended group of realistic EoSs based on various theoretical nuclear models
is employed. The abbreviated names of these EoSs are: MDI (Moustakidis and Panos, 2009;
Prakash et al., 1997), NLD (Gaitanos and Kaskulov, 2013, 2015), HHJ (Heiselberg and Hjorth-
Jensen, 2000), Ska, Ski4 (Chabanat et al., 1997; Farine et al., 1997), HLPS (Hebeler et al.,
2013), SCVBB (Sharma et al., 2015), BS (Balberg and Shapiro, 2000), BGP (Bowers et al.,
1975), W (Walecka, 1974), DH (Douchin and Haensel, 2001), BL (Bombaci and Logoteta, 2018),
WFF1,WFF2 (Wiringa et al., 1988), APR (Akmal et al., 1998) and PS (Pandharipande and Smith,
1975). All of them satisfy, at least marginally, the observed limit of M = 1.97 £ 0.04 M, (PRS
J1614-2230 (Demorest et al., 2010)) and M = 2.01 + 0.04 M, (PSRJ0348+0432 (Antoniadis
et al., 2013)). Actually, at the moment, the most robust constraints on the neutron star EoSs
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are based on the measurements of the lower bound of the maximum neutron star mass. Strictly
speaking, the suggested EoSs, which do not reproduce the higher measurement of neutron star
mass, must be excluded.

It is also well known that the rapidly rotating neutron stars can be used in order to determine
the EoS (see Ref. (Haensel et al., 2007) and reference therein). In particular, the maximum
rotating frequency fin.x (Keplerian frequency) depends both on the gravitational mass My,
and the EoS. Until this moment, the fastest known pulsar, PSR J1748-244ad, is rotating with
frequency 716 Hz (Hessels et al., 2006). While the theoretically predicted values for fi,.x are
much higher than 716 Hz, there is a lack of neutron stars rotating faster than this value. It is an
open problem, and additional theoretical assumptions must be needed to solve it.

The present research concentrates on the dependence of the effective critical adiabatic index
on the compactness of neutron star for each EoS. We mainly focus on the interface between stable
and unstable configurations, corresponding to the maximum mass configuration. This region
is critical since it is directly related to the high density part of the neutron star EoS. This issue
remains an open problem. Moreover, we propose an additional method to constrain the EoSs
with the help of accurate measurements of the maximum neutron star mass and/or compactness.
Finally, we make an effort to relate the maximum rotating frequency fi.x with the critical
adiabatic index and the bulk properties corresponding to the maximum mass configuration of a
non-rotating (static) neutron star (including the maximum mass M3t the corresponding radius
R and the compactness parameter 552 ) so as to indicate how observational measurements of
high rotating neutron stars may impose constraints on the EoS.

For the numerical integration of the equilibrium equations, two set of codes have been used

» rRNS: Numerical code for rotating neutron stars from (Stergioulas and Friedman, 1995)
* NROTSTAR: Numerical code from the C++ Lorene/Nrotstar library (LORENE, 1998)

The dissertation is structured as follows. In Section 2, neutron stars’ stellar composition and
structure, considering both the hot and cold matter, is presented, paying particular attention to the
microscopic quantities and their analysis. In Section 3, the stability criteria for cold as well as
hot neutron stars are provided, while in Section 4, the construction of the EoSs, considering the
cold and hot neutron star matter, is illustrated. Section 5 is devoted to describing the bulk cold
neutron star properties and their connection with rapid rotation, while Section 6 is focused on the
stability of cold neutron stars through the adiabatic index. Neutron stars with hot, lepton-rich
matter and rapid rotation are extensively analyzed in Section 7, and Section 8 is dedicated to the
concluding remarks of the research. Appendix provides the numerical recipes for some research
processes.
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Stellar composition and structure

2.1 Momentum-dependent interaction model

The schematic potential of the MDI model is specifically designed to reproduce the results of
the more microscopic calculations of nuclear matter, as well as of neutron-rich matter at zero
temperature (Moustakidis, 2007, 2008, 2009; Moustakidis and Panos, 2009; Prakash et al., 1997,
Psonis et al., 2007). This model combines both density and momentum dependent interaction
among the nucleons. It is well known that nuclear interaction has strong exchange effects that
give rise to a momentum dependence in the single particle potential, and as a consequence,
it has an effect on the energy density functional. The present model was introduced by Gale
et al. (Bertsch and Gupta, 1988; Gale et al., 1987, 1990; Prakash et al., 1988) to examine the
influence of momentum dependent interactions on the momentum flow of heavy-ion collisions.
Over the years, the model has been modified, elaborated and, extensively applied in the study not
only of heavy-ion collisions but also the properties of nuclear matter (Chen et al., 2005; Csernai
etal., 1992; Das et al., 2007, 2003; Li et al., 2004a,b; Modarres, 1997; Sumiyoshi and Toki, 1994;
Xu et al., 2007a). A major advantage of this model is the extension to finite temperature through
the momentum dependent interactions among the nucleons. In the following, we are going to
calculate and present the different aspects (zero and finite temperature) of the MDI model with
analytical description.
The energy density of the asymmetric nuclear matter (ANM) is given by the equation
E(nynp, T) = Eliy (nn, T) + Exy (0, T) + Vit (g, 1y, T) 2.1
where n,,, n,,, and n are the neutron, proton, and total density (n = n,, + n,,), respectively. The
first two terms in Equation (2.1) are referring to the contribution of the kinetic energy from both
neutrons and protons, and can be written as

- &3k w2k?
Ein (n7,T) = 2/W%ﬂ (n-, k,T), (2.2)

where 7 denotes the neutrons and protons, m denotes the nucleon mass, and f.- is the Fermi-Dirac
distribution function with respect to 7 given by the following form

er (nT7k7T) — Hr (nT7T)>:|1. (23)

fr (s k,T) = |:1+6(Ep( T

The nucleon density n., that appears in Equation (2.3), in accordance to f., can be evaluated

33
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from the integral

3
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The terms that appear in Equation (2.4) can be explained as follows
* e; (ns, k,T) — single-particle energy (SPE),
* ur (nrs, T) — chemical potential.
The single-particle energy has the following form
h2k?
T T7kaT = UT T)k7T ) 25
er (e, K, T) = S 4 Uy (7, ,T) 25)

where the single-particle potential U, (n., k,T'), which depends on the momentum, is obtained
by the functional derivative of the interaction of the energy density with respect to the distribution
function f,. Including the effect of finite-range forces among nucleons, in order to avoid acausal
behavior at high densities, the potential contribution is parametrized as

Vint(nin,np, T') = %AnS [2 — X012:| u?
2Bn, [3 - XaI?] ut!
L+ 3B [3 = Xal?ur ™! (2.6)
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where ns denotes the saturation density, u = n/ns, I = 1 — 2Y), is the asymmetry parameter,
Y), is the proton fraction, X; = £ + z;, with i = 0,3, [A, B, B, 0, C;] are the parameters for
symmetric nuclear matter (SNM), [z, 23, Z;] are the parameters for asymmetric nuclear matter,
and
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with g(k, A;) being a suitable function to simulate finite range effects defined as

1+ AN
A
The finite-range terms, that correspond to a long range attraction and a short range repulsion,

take the values A; = [1.5 k%, 3 k%], where k9. is the Fermi momentum at the saturation density.
It has to be noted here that there is another case for the g(k, A;) function. In that case,

= [ ()

the finite-range interactions are approximated by effective local interactions by retaining only
the quadratic momentum dependence. In fact, Equations (2.8) and (2.9) coincide for low values
of momenta, but diverge for higher values.

g(k, A;) = 2.8)

, (2.9)
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The entropy density has the same functional form with that of a non-interacting gas system
given by

&3k
s T0) = =g [ G g (1= 1) a1 = 1), (2.10)
where g stands for the spin degeneracy, and it is equal to 2 for protons, neutrons, electrons, and
muons, and equal to 1 for neutrinos.
2.1.1 Symmetric nuclear matter

In symmetric nuclear matter, the energy density can be calculated through Equations (2.1)
and (2.6) by setting the asymmetry parameter equal to zero, as (Moustakidis, 2007)
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In this case, the single particle potential is calculated through the relation

i=1,2

where the momentum dependence appears in the last term. The momentum independent term

Uz, (n;T) is available through the form
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2.1.2 Pure neutron matter

In pure neutron matter, the energy density can be calculated through Equations (2.1) and (2.6) by
setting the asymmetry parameter equal to one, as (Moustakidis, 2007)
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In this case, the single particle potential is calculated through the relation
~ 2
Upnm(n, b T) = U (n; T) + Zu > (3C; — 4Z:)g(k, As), (2.15)

i=1,2

where the momentum dependence appears in the last term. The momentum independent term
Upnm(n; T') is available through the form
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In both cases of subsections 2.1.1 and 2.1.2, for a fixed baryon density and temperature,
Equation (2.4) can be solved iteratively for

w(n,T) —Ul(n, )

"7(”7 T) = T

(2.17)

The knowledge of n(n, T') allows the evaluation of the last term in Equations (2.13) and (2.16),
which then inferred the chemical potential from

w(n,T) = Tn(n,T) +U(n,T). (2.18)

Equation (2.18) is a requirement for the calculation of the single particle spectrum, and as a
consequence, the evaluation of the bulk quantities of asymmetric nuclear matter.

2.1.3 Single-particle potentials

In the single particle energy, calculated through Equation (2.5), the interaction term, in general,
depends on the density, the momentum, the isospin asymmetry, and the temperature, U, =
(n,I,k,T). The single-particle potential has the general form (Moustakidis, 2008; Moustakidis
and Panos, 2009)

Ur(n, 1,k,T) = Up(n,I) + UZ (n, I) + Uy (n, I, k,T), (2.19)

where the first two terms correspond to the momentum independent ones, and the last one
describes the momentum dependence of the single-particle potential. Specifically, the terms can
be expressed as:

2
Ur(n,I) = Au¥F gAXOuI, (2.20)
B1 I Bz I _ B3 I B4 I
UE(”,I) UT (TL, )UT (Tl, ) UT 2(77*7 )UT (Tl, ), (221)
(U7 (n, 1)]
where
B, o 4 o 2 o772
UPt(n,I) = B(oc+1u :FgBXgu I+§B(1—U)X3u I, (2.22)
2
UB(n,I) = 1+ gB’ (‘;’ — X312> u’ (2.23)
B 4B’
UB(n,I) = —(o—-1u" 2% Xau® 21
Ng 3ng
2B’
+ (3 —0) Xsu? 212, (2.24)
3ng
B. 2 3 2 o+1
UTA('IL]) = ans 5 - Xgl u 5 (225)
4 1 , ,
UMP(n, Ik, T) = —(3C; —42Z) Jt 427 T4
W LET) = g 3 560427+ (€ 22) 7]
. _87.
+ wu Z Kc + CSI) g(k,Ai)} ) (2.26)
1=1,2 5

)

In Equation (2.26) the 7, 7’ are referring to neutrons and protons, in accordance to the signs,
whereas the upper signs denote the neutrons, and lower ones denote the protons. In particular,
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while the first two terms are functions of the baryon density and the isospin parameter, the last
one has an additional dependence on the temperature and the momentum. The latter is implied in
the function g(k, A;) and is expected to be important both for the single-particle properties and
the bulk properties of nuclear matter.

In addition, the calculation of the single-particle potential in symmetric nuclear matter have
been performed in a microscopic way for several Hamiltonians in Wiringa (Wiringa, 1988).
The Hamiltonians include nucleon-nucleon potentials fit to scattering data and three-nucleon
potentials properties of nuclear matter. Following the formula

(U)] 0o

where the parameters o, 3, and A depend only the density and their calculation for three types of
Hamiltonian is listed in Table I of Ref. (Wiringa, 1988). Furthermore, Li and Machleidt (Li and
Machleidt, 1993), based on th Bonn meson-exchange model for the nucleon-nucleon interaction
and the Dirac-Brueckner approach for the nuclear matter, has parameterized the single-particle
potential as

U(n, k) = a(n) + 5(n)

U(n, k) = an+ Bn + §In* [E (hck)2 + 1} n?, (2.28)

where the parameters «, 3, 7, J, €, and o are listed in Table I of Ref. (Li and Machleidt, 1993).

2.1.4 Nuclear symmetry potential

The nuclear symmetry potential is a quantity that corresponds to the isovector part of the nucleon
mean-field in isospin asymmetric nuclear matter. In the case of hot nuclear matter, this property
also depends on the temperature. The nuclear symmetry potential presents the behavior between
the neutron and proton single particle potentials in neutron-rich matter, as (Moustakidis, 2008)

Usm(n, I, k,T) = % [Un(n,I,k,T)—Uy(n,I,k,T). (2.29)

Most of the theoretical models that have been applied to study the properties of the symmetry
potential present the reduction of the nucleon symmetry potential with increasing nucleon
momentum. However, there are studies that suggest the opposite behavior.

Based on the systematic analysis of a large number of nucleon-nucleon scattering experiments
and (p, n) charge exchange reactions at beam energies up to 100 MeV, the data can be described
as

Usym(Ekin) = — bEkim (230)

where a € [22,34] MeV and b € [0.1,0.2]. Tt is worth noticing that the uncertainties on these
values are large (for more information see Refs. (Dalen et al., 2005; Kozack and Madland, 1990,
1989; Lane, 1962; van Dalen et al., 2004; van Dalen et al., 2005)).

2.1.5 Effective mass

One of the most important single-particle properties is the nucleon effective mass. It is a
characterized quantity for the momentum dependence of the single-particle potential of a nucleon
and consequently, for the quasi-particle properties of a nucleon inside a strongly interacting
medium, i.e. the nuclear matter. In addition, the nucleon effective mass describes to a leading
order the effects related to the non-locality of the underlying nuclear effective interaction and the
Pauli exchange effects in many-fermion systems (Moustakidis, 2008).
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In particular, the effective mass is defined via the momentum dependent single nucleon
potential as

(2.31)

mki(n, I, k) 1 m; dUr(n, 1, k,T) -t
2k dk ’
Considering the evaluation of the Equation (2.31) at the Fermi momentum, then the Landau

effective mass is provided. By employing Equation (2.21), Equation (2.31) can be presented in
the analytical form

m,

—1
mi(n, I, k) m,
R St Sk v | . 232
oo +uh2kFZ M] (2.32)
=kr

i=1,2

) dk

(Ci n C; —8Z7; I) dg(k, A;)

By considering the cases Equation (2.8) and (2.9), Equation (2.32) can be evaluated as

-1

mi(n, I, k) _ {— 2um., Z 1 C; £ %I (2.33)
ms h? < A,LQ 40 2 23 2 ) .
i=1.2 {1 + (%) [0+ }
-1
mi(n,I,k) 2um., 1 C; —8Z;
T = 3 v <Czi 51) . (2.34)

i=1,2

Equations (2.33) and (2.34) show the dependence of the properties of nuclear matter on the
Landau effective mass. In particular, the Landau effective mass depends of the parameters C;
and Z;, which are connected with the saturation properties and the density dependence of the
nuclear symmetry energy, respectively. Additionally, there is a direct dependence on the baryon
density and the isospin asymmetry, as well as on the values of A;. The latter corresponds to the
specific choice of the regulating function g(k, A;).

2.1.6 Properties of nuclear matter

The total energy per particle can be expanded as follows (Constantinou et al., 2014, 2015)

E(n,I)=EMn,0)0+ Y Egmx(n)I", (2.35)
k=24,
where ) (n. 1)
1 9E(n,I
Bymp(n) = ——~2221 | 2.
sy ,k(n) k! oIk —o ( 36)

In the case of the parabolic approximation (pa) it is considered that the symmetry energy is given
through
Egympa(n) = E(n, I =1) — E(n, I =0), (2.37)

while in the full approximation (f) it is given through
Egm £(n) = Egm2(n) = Sa(n). (2.38)

The properties of nuclear matter at the saturation density are defined as (Constantinou et al.,
2014, 2015)

ng (n)
dn

d252(n)
2
, K =9n; a2 ,

N N

L =3n, (2.39)
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d3S5(n) d*E(n,0)
_ 3 2 _ 2 )
Q = 27ns dn3 . s KO = QHST . 5 (240)
d*E(n,0
Qo = 270 CEM0)| (2.41)
dn3 .

where L, K, () are related to the first, second and third derivative of the symmetry energy Sa(n),
respectively. K is the compression modulus and Q) is related to the third derivative of E(n,0).
The n, is the saturation density of symmetric nuclear matter and its equal to 0.16 fm—3.

2.2 Thermodynamics of hot neutron stars

The Helmholtz free energy F' is a mandatory quantity for studying the properties of the nuclear
matter at finite temperature. In particular, the differential of the total free energy Fi, and the
total internal energy FEi (total free/internal energy of baryons contained in volume V') are given
as (Fetter and Walecka, 2003; Goodstein, 1985)

dFo = =SdT = PAV +  pidN, (2.42)

dEwt = TdSiet — PdV + Z widN;, (2.43)

K2

where Sy is the total entropy of baryons, and p;, N; are the chemical potential and the number
of particles of each species, respectively. The free energy per particle F' can be written as

F(n,T,I) = E(n,T,I) —TS(n, T, I), (2.44)

with E = £/n and S = s/n being the internal energy and entropy per particle respectively. It
has to be noted here that for 7' = 0 MeV, Equation (2.44) leads to the equality between free
and internal energy. The latter means that for the cold, catalyzed matter, the internal energy and
Helmbholtz free energy coincide.

As the total internal energy is useful for studying isentropic processes, for the described
thermodynamic system, pressure and chemical potentials are defined as follows

O0F 20 (E/n)
P=— = 2.45
S,Ni S»Nzi
o = VB = (2.46)
1S VIN s i S,V

2.2.1 Bulk thermodynamic quantities

It what follows, the research will focus on the presentation of bulk thermodynamic quantities and
approximations related to the present study. As the key quantity is the free energy, the pressure
and chemical potentials are connected with the derivative of the total free energy Fi, and defined
as

O0F 20 (f/n)
P=- = 2.47
ov on ’ (2:47)
T,Ni T;Ni
po = o 248)
ON; Uz
T7V7N]’¢i T,V/I’Lj;éi
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where f denotes the free energy density. Even more, the pressure P can be calculated also
from (Fetter and Walecka, 2003; Goodstein, 1985)

P=Ts—E+ Y pin;. (2.49)

The calculation of the entropy per particle S(n,T) is being by differentiating the free energy
density f with respect to the temperature

S(n,7) = 24/ (g%”)

_OF

57 (2.50)

‘/7 Ni n

The comparison between Equations (2.10) and (2.50) for the entropy, provides a testing criterion
of the approximation used in the present study.

By applying Equation (2.48), the chemical potentials for protons and neutrons take the form
(for a proof see Ref. (Prakash, 1994) as well as Refs. (Burgio et al., 2007; Nicotra et al., 2006))

oF oF
w=F+u— —Y,—o| 2.51
" T P9y, (251a)
Yy, T n, T
oF
n, T
oF
o= = flp = — 5o (2.51¢)
' 8Yp n, T’

The free energy F'(n, T, I) and the internal energy F(n, T, I') can be expressed by the following
parabolic approximations (PA) (Burgio et al., 2007; Moustakidis, 2008; Moustakidis and Panos,
2009; Nicotra et al., 2006; Xu et al., 2007b)

F(n,T,I) = F(n,T,I =0) + I* Fym(n, T), (2.52a)
E(n,T,I) = E(n,T,I = 0) + I* Egyn(n,T), (2.52b)
where
Fym(n,T) = F(n, T, =1) — F(n, T, I = 0), (2.53a)
Eym(n,T) = E(n,T,1 =1) — E(n,T,I = 0). (2.53b)

In order to apply the above approximation, the validity checking of the parabolic law is mandatory.
The validity of the PA, at least in the present model, has been tested previously. It has been proved
that the PA is well satisfied not only on the internal energy, but also on the free energy (Moustakidis,
2008; Moustakidis and Panos, 2009). A similar statement about the validity of the PA has also
been found in Refs. (Burgio et al., 2007; Nicotra et al., 2006; Xu et al., 2007b). However, in
other similar studies (Tan et al., 2016), it was found that the validity of the PA suffers from
uncertainties. We conjecture that the validity of the PA strongly depends on the specific character
of each nuclear model.
The key quantity of Equation (2.51c) can be obtained by using Equation (2.52a) as

fi = iy — pp = 4(1 = 2Y,) Foym(n, T). (2.54)

This equation is similar to that obtained for cold catalyzed nuclear matter by replacing Eym(n)
with Fyym(n, T).
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It is intuitive to assume, based mainly on Equations (2.52a) and (2.52b), that the entropy
must also exhibit a quadratic dependence on asymmetry parameter I, that is according to the
parabolic law (Moustakidis, 2009)

S(n,T,I) = S(n,T,I =0)+ I*’Sym(n,T), (2.55)
where

Seym(n, T) = S(n,T,1 =1)— S(n,T,I =0)
1

= T(Esym(n,T) — Fym(n,T)). (2.56)

2.2.1.1 Leptons contribution to equation of state

In principle the hot nuclear matter is composed, except by the two baryons (protons and neutrons),
by photons and leptons (electrons, muons, and neutrinos), and also from their corresponding
anti-particles (positrons, anti-muons, and anti-neutrinos).

Nuclear matter at high densities in order to be stable must be in chemical equilibrium for
all reactions (including the weak interactions). 5 decay and electron capture would take place
simultaneously as

n—p+e +v, and p+e — n+v.. (2.57)

Both of them affect directly the EoS as they change the electron per nucleon fraction Y,.. By
assuming that the generated neutrinos have already left the system, the absence of neutrino-
trapping has a dramatic effect on the EoS as a significant change on the values of the proton
fraction Y}, is in order (Takatsuka, 1996; Takatsuka et al., 1994). The absence of neutrinos implies
that

= — fp = He- (2.58)
In general, it is considered that nuclear matter contains neutrons, protons, electrons, and muons.
Muons decay to electrons as (Suh and Mathews, 2001)

P —r e F+vy+ Ve, (2.59)

but when the Fermi energy of the electrons approaches the muon rest mass m,, ~ 105.7 MeV
(due to their rest mass, it is expected to merely appear at the saturation nuclear density), it
becomes energetically favorable for electrons at the top level of Fermi sea to decay into muons
with neutrinos and anti-neutrinos escaping from the star. Hence, above some density, muons and
electrons are in equilibrium state

uoore, (2.60)

assuming that the neutrinos left the star. These particles are considered to be in a S-equilibrium
state, where the following relations hold

Hon = Hp + ple, and  pe = fiy,. (2.61)
The neutrality charge condition is also satisfied through the relation
Np = Ne + Ny (2.62)

The density of leptons (electrons and muons) is expressed through the relation

2 A3k
n; = @ )3/ . (2.63)
m /B2k2c24+m2c4 —
1+€Xp —N]
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Equations (2.54), and (2.61) - (2.63) are solved in a self-consistent way for the calculation of
the proton fraction Y/, the lepton fractions Y., and Y),, as well as the lepton chemical potentials
tte, and p1,, as functions of the baryon density n, for various values of the temperature 7'.

Afterward, the energy density and pressure of leptons is calculated through the following
formulae

2 &k \/B?k2c? + mZct
E(n, T) = (%)3/ N , (2.64)
1 =+ exp +
1 2 h d3k k2
Py, T) = 1 201) / h%%z — — Q6
\/h2k2c?2+m;ict—
1+exp —; ! m]

The chemical potentials of electrons and muons, which are equal, according to Equa-
tions (2.54) and (2.61) are

fe = fy = pn — pip =4I (n, T) Fyym(n, T). (2.66)

Equation (2.66) is crucial for the calculation of the proton fraction as a function of the baryon
density and for various temperatures. The EoS of hot nuclear matter in S-equilibrium state is
provided through the calculation of the total energy density & as well as the total pressure F,.
The total energy density is given by

E(n, T, 1) =&, T, 1) + Y &M, T, 1)+ > &n, T, 1) + & (n, T), 2.67)
l a

where &(n, T, 1), & (n, T, I), E(n, T, I), and E,(n, T) are the contributions of baryons, particle
and anti-particles of leptons, and photons, respectively. The total pressure is

P(n,T,I) = Py(n, T, 1) + ZPl n, T, 1)+ > Pi(n,T, 1) + Py(T), (2.68)
T

where Py (n, T, I) is the contribution of baryons (see Equation (2.49))

P(n.T,1)=T Y s;(n,T,1)+ > nrpr(n,T,1) = E(n, T, ), (2.69)

T=p,n T=n,p

while Py(n, T, I), Pi(n,T,I),and P, (T) are the contributions of particles and anti-particles of
leptons, and photons, respectively.

It is worth mentioning that, in principle, it is necessary to include photons and anti-particles,
which are in thermal equilibrium with the other constituents of the hot nuclear matter. How-
ever, in the present study, the relative particles will be excluded since their contribution is
negligible (Takatsuka et al., 1994).

2.2.2 Isothermal temperature profile

In the present study, it is considered that nuclear matter consists only of neutrons, protons, and
electrons. Therefore, electrons are the only leptons that contribute to the energy density and
pressure. Assuming that for each value of temperature the proton fraction is a well known
function of the baryon density, Y, = Y, (n), the total energy density reads as

&, T,Y,) =&, T,Y,) + E(n,T.,Y,), (2.70)
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where
gb(’IL T, Yp) = nFpa + nT Spa, 2.71)

Ee(n,T,Y,) is given by Equation (2.64) replacing the leptons with electrons and (. from Equa-
tion (2.66), and in the frame of the parabolic approximation Fps and Spa are given by the
Equations (2.52a) and (2.55), respectively. In addition, the total pressure reads as

R(n7T7 Yp) = Pb(any Yp) +Pe(n7Ta Yp)7 (272)

where
2 0FpA(n, T,Y))

on ’
T,TL,;

P,(n,T,Y,)=n (2.73)

and P.(n,T,Y,) is given by Equation (2.65) replacing the leptons with electrons and y. from
Equation (2.66).

Henceforth, in the present study, Equation (2.70) for the energy density and Equation (2.72)
for the pressure, are the ingredients for the construction of isothermal EoSs of hot nuclear matter
in a S-equilibrium state.

2.2.2.1 Thermal index

Except proto-neutron stars and supernovae, hot EoSs find their place in neutron stars mergers
where the increase of temperature is rather significant. A usual treatment, in order to study the
effects of temperature on neutron stars and to include thermal effects in neutron stars mergers
simulations, is the effective thermal index defined as (Constantinou et al., 2014, 2015)

Pan(n)

Fin(n) =1+ Ean)’

(2.74)

where Py,(n) and Ep(n) are the pressure and energy density contribution to the cold EoS due to
temperature. More precisely, for a specific value of temperature, the right-hand side terms of
Equation (2.74) are defined as

Pan(n) = P(T,n) — P(T' = 0,n), (2.75a)
En(n) =E(T,n) — E(T =0,n). (2.75b)

It has to be noted that although Equation (2.74) is artificially and not self-consistently
constructed, it has been widely used in order to introduce the effects of temperature in isothermal
EoSs (Bauswein et al., 2010).

In most cases, the values of the thermal index are taken to be constant, an approximation
which seems to be unrealistic since a high density dependence is suggested by the interactions of
cold catalyzed matter.

2.2.3 Isentropic temperature profile and neutrino trapping

In the case of the isentropic profile, it is considered that the entropy per baryon and lepton fraction
are fixed in the interior of proto-neutron star. In particular, according to Equation (2.57), it is
considered that neutrinos are trapped in the interior of the star, a process which leads to a dramatic
increase of the proton fraction. Now, the chemical equilibrium can be expressed in terms of the
chemical potentials for the four species

Mn + Hy, = Hp + He- (276)
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Obviously, the charge neutrality demands Y), = Y., while the total fraction of leptons reads as
Y, =Y. +Y,,. Moreover, the chemical equilibrium leads to the expression

te — fy, = fn — tp = 4(1 = 2Y,) Fgym(n, T). 2.77)

Similar to isothermal profile, one can solve self-consistently the relevant equations in order to
calculate the density and temperature dependence of proton and neutrino fractions, as well as the
corresponding chemical potentials for a fixed value of the total entropy per baryon. However,
in order to avoid computational complications (arising mainly from the system of the coupled
integral equations), the approximation introduced by Takatsuka et al. (Takatsuka et al., 1994)
is followed. In particular, it was find that the proton fraction is well approximated (within 3%
accuracy) by the empirical formula Y,, ~ 2/3Y; + 0.05. The ingredients for the construction of
isentropic EoSs are given by Equations (2.67) and (2.68).

Two important quantities related to the measure of stiffness of the EoS and, consequently,
the stability of proto-neutron stars are the adiabatic index, defined as

n OP
N=—— .
Pon|’ 2.78)
s
and the speed of sound given by (Landau and Lifshitz, 1969)
Cs oP
=4/ — 2.79
c o€ s 2.79)




CHAPTER 3

Stability of neutron stars

3.1 Cold neutron stars

Einstein’s equations for a non-rotating neutron star are the most suitable tool to describe its
macroscopic properties. In this case, the metric for curved spacetime is (Glendenning, 2000;
Weber, 1996)

ds® = e*dt? — e*dr® — r? (d6* + sin” 0d¢?) , (3.1)

where v and ) are metric functions that depend on the coordinates r. These equations are solved
numerically, coupled to the hydrostatic equilibrium condition, and with source terms given by
that of a perfect fluid. The latter is possible by neglecting sources of nonisotropic stresses, as
well as viscous ones, and heat transport. The energy-momentum tensor that describes the perfect
fluid is
™ = (€ + P)ut'u” + Pg"", (3.2)
where u* and u” are the fluid’s four-velocity. The thermodynamical quantities, energy density
and pressure, are denoted as £ and P, respectively, and g"* denotes the spacetime metric function.
The stability of cold non-rotating neutron stars is acquired by using the general properties of
the central density as well as those of the mass—radius relation (Weinberg, 1972). In this case, the
configuration is stable when the inequality dM /dE. > 0 holds. However, it needs to be noted
that this condition is just necessary but not sufficient.

3.2 Cold rotating neutron stars

Einstein’s equations for a rigidly rotating neutron star are also the most suitable tool to describe
its macroscopic properties. In this case, the metric for curved spacetime is (Glendenning, 2000;
Weber, 1996)

ds® = —2dt* + 2 (dp — N?dt)? + &> (dr? +r2d6?) , (3.3)

where v, ¢, N¥, and w are metric functions that depend on the coordinates r and 6. As in the
former case, these equations are solved numerically, coupled to the hydrostatic equilibrium
condition, and with source terms given by that of a perfect fluid. The latter is possible by
neglecting sources of nonisotropic stresses, as well as viscous ones, and heat transport. The
energy-momentum tensor that describes the perfect fluid is

™ = (& + P)u'u” + Pgh", (3.4)

where u# and u” are the fluid’s four-velocity. The thermodynamical quantities, energy density
and pressure, are denoted as £ and P, respectively, and g"*” denotes the spacetime metric function.
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The stability of cold rotating neutron stars is acquired via the turning-point criterion, which is
only a sufficient and not a necessary one. In fact, the neutral stability line is positioned to the left
of the turning-point line in (M, p.) space. The latter indicates that the star will collapse before
reaching the turning-point line (Takami et al., 2011; Weih et al., 2017).

3.3 Hot neutron stars

The stability of hot neutron stars is acquired via a specific version of the secular instability
criterion of Friedman et al. (Friedman et al., 1988), which follows Theorem I of Sorkin (Sorkin,
1982). We choose a continuous sequence of equilibria to be at a fixed baryon number Ny, and
total entropy of the neutron star S, and the extremal point of the stability loss is (Goussard
et al., 1997)

oJ

C
ong

=0, 3.5)
Nbarvsrs

where J and nj are the angular momentum and central baryon density of the star, respectively.

In addition, a turning point in the sequence occurs where three out of four derivatives,
OMg:/Ong, OMy/Ong, 0J /Ong, and OSP* /Ong, where My, and My, denote the gravitational and
baryon mass, vanish (Kaplan et al., 2014; Marques et al., 2017). At this point, the turning-point
theorem shows that the fourth derivative also vanishes, and the sequence has transitioned from
stable to unstable.

The criterion for distinguishing secularly stable from unstable configurations is meaningful
only for constant entropy per baryon or temperature (Marques et al., 2017). In our calculations,
as the entropy per baryon and temperature are constant throughout the star, the other three
criteria simultaneously vanish at the maximum mass configuration, which is the last stable
point. It has to be mentioned that the rotating configuration with maximum mass and the one
with maximum angular velocity do not generally coincide (Friedman and Stergioulas, 2013).
However, the difference is very small, and it could not be detected within the precision of our
calculations (Goussard et al., 1997).



CHAPTER 4

Construction of the equation of state

4.1 MDI-APR1 and MDI-APR2

The construction of the EoS is being performed with the MDI model and data originated from
Akmal etal. (Akmal etal., 1998) for the A18+UIX (hereafter APR1) and A18+5v+UIX* (hereafter
APR?2). To be more specific, the data concerning the energy per particle of SNM and PNM for
the two models, in the baryon density range [0.04, 0.96] fm~3, are employed. In order to achieve
the best fitting into Akmal’s data, the region of study is divided into three sections

« low density region n € [0.04,0.2] fm~—3,
« medium density region n € [0.2,0.56] fm—3,
+ high density region n € [0.56,0.96] fm—>.

In particular, in order to ensure the continuity in the EoSs, the continuity among the transition
points for different regions is demanded. This method is used to calculate the coupling constants
and the parameters for the ANM. The main properties of nuclear matter at the saturation density
for the MDI-APR1 and MDI-APR2 EoSs, including also isovector quantities, are presented in
Table 4.1. In addition, the schematic presentation of the MDI-APR1 and MDI-APR2 EoSs is
presented in Figure 4.1.

Table 4.1: Properties of nuclear matter (NM) for APR-1 and APR-2 EoSs.

Properties of NM APR-1 APR-2 Units
Lpa 63.18 57.43 MeV
Qpa 482.34 568.91 MeV
Kpa -103.70 -118.78 MeV
Esym,, 33.61 33.59 MeV
L¢ 63.31 57.40 MeV
Qr 450.50 538.44 MeV
Ky -88.26 -99.81 MeV
Eeym; 32.74 32.53 MeV
Qo -581.27 -581.27 MeV
Ko 256.40 256.40 MeV
mE/m; 0.79 0.79
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Figure 4.1: Symmetric nuclear matter and pure neutron matter fits for APR EoSs using Ak-
mal’s (Akmal et al., 1998) data and the MDI model. The SNM is presented with the circles and
the solid line, the APR-1 PNM is presented with the triangles and the dashed line, and the APR-2
PNM is presented with the squares and the dashed-dotted line.

4.2 MDI+APRI1

The construction of the EoSs for the description of neutron stars is based on the MDI model and
the data provided by Akmal et al. (Akmal et al., 1998) for the APR-1 EoS (hereafter MDI+APR1).
Its schematic presentation is shown in Figure 4.2. This model, as a microscopic one, is available
via ab initio calculations. The explicit use of the MDI model is due not only to its numerous
advantages but also to its ability to express the energy per particle as a function of the density
and momentum. This property is the one that allows the extension of its parameterization to a
finite temperature that is suitable for studying processes sensitive to thermal effects, including
core-collapse supernovae, protoneutron stars, neutron star mergers, etc.

Using this parameterization one cold EoS, 10 hot EoSs based on various temperatures in the
range [1, 60] MeV, and nine hot EoSs based on various lepton fractions and entropies per baryon
in the ranges [0.2,0.4] and [1, 3] kp, respectively, have been constructed. The advantages of the
MDI+APRI1 EoS are (a) it reproduces with high accuracy the properties of SNM at the saturation
density (including isovector quantities K and ()y) which are shown in Table 4.2; (b) it correctly
reproduces the microscopic calculations of the Chiral model (Hebeler and Schwenk, 2010) for
pure neutron matter (PNM;for low densities) and the results of state-of-the-art calculations of
Akmal et al. (Akmal et al., 1998) (for high densities); and (c) it predicts a maximum neutron
star mass at least higher than the observed ones (Antoniadis et al., 2013; Arzoumanian et al.,
2018; Cromartie et al., 2019; Demorest et al., 2010; Fonseca et al., 2016; Linares et al., 2018). In
addition, the predictions of PNM have been compared with those originating from the very recent
state-of-the-art calculations (shaded region in Figure 4.2; Piarulli et al. (Piarulli et al., 2020)).
From Figure 4.2, it is obvious that at very low densities, the agreement is quite satisfactory, while
for higher densities, a deviation is exhibited. The latter is pointed out and discussed in Piarulli et
al. (Piarulli et al., 2020).

For the solid crust region, two models have been adopted. For the cold case, the EoS of
Feynman et al. (Feynman et al., 1949) and also Baym et al. (Baym et al., 1971) are employed, while
for the finite temperature cases and the low-density region (n, < 0.08 fm~3), as well as the finite
entropies per baryon and lepton fractions, the EoSs of Lattimer & Swesty (Lattimer and Swesty,
1991) (hereafter LS220) and the specific model corresponding to the incomprehensibility modulus
at the saturation density of SNM Ky = 220 MeV are used (https://www.stellarcollapse.

org).
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Figure 4.2: The SNM and PNM fits for the MDI+APRI1 cold EoS. The SNM is presented by the
circles and solid line, while the PNM is presented by the triangles and dashed line. The shaded
region corresponds to benchmark calculations of the energy per particle of PNM extracted from
Piarulli et al. (Piarulli et al., 2020).

Table 4.2: Properties of nuclear matter (NM) at the saturation density for the MDI+APR1 EoS.

Properties of NM MDI+APRI1 Units
Loym 77.696 MeV
Qsym 223.061 MeV
Koym 0.016 MeV
Esym 31.071 MeV
Qo -25.687 MeV
Ky 220.671 MeV

mE/m;, 0.822
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CHAPTER 5

Neutron stars with cold, catalyzed matter

5.1 The selected equations of state

The EoSs that are used (Akmal et al., 1998; Balberg and Shapiro, 2000; Bombaci and Logoteta,
2018; Bowers et al., 1975; Chabanat et al., 1997; Douchin and Haensel, 2001; Farine et al.,
1997; Gaitanos and Kaskulov, 2013, 2015; Hebeler et al., 2013; Heiselberg and Hjorth-Jensen,
2000; Koliogiannis and Moustakidis, 2019; Moustakidis and Panos, 2009; Pandharipande and
Smith, 1975; Prakash et al., 1997; Sharma et al., 2015; Walecka, 1974; Wiringa et al., 1988)
are consistent with the current observed limits of neutron star mass (Antoniadis et al., 2013;
Arzoumanian et al., 2018; Cromartie et al., 2019; Demorest et al., 2010; Fonseca et al., 2016;
Linares et al., 2018) and also with the one for frequency (Hessels et al., 2006). Figure 5.1 displays
the gravitational mass versus the corresponding equatorial radius (hereafter radius) for the 23
EoSs at the non-rotating configuration, where the current observed limits are also presented.
Moreover, the EoS with appearance of hyperons at high densities (FSU2H) (Tolos et al., 2017b)
and the one suitable to describe quark stars (QS57.6) (Glendenning, 2000; Haensel et al., 2007),
are also indicated.

--- APR- === BS --- HLPS3  --- NLD Ski4
40F === BGP === HHF === MDI2 SCvBB WEF-2
b === BLl === HHJ2  --- MDI3 Ska w
---= BL2  --- HLPS2 --- MDI4
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)
s

Gravitational Mass (Mg)

12 14
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Figure 5.1: Mass - Radius diagram for the 23 EoSs at the non-rotating configuration. The
observed limits of neutron star mass are presented with the horizontal dotted lines (1.908 M),
2.01Mg, 2.14M¢ and 2.27Mg). The observed limit of 716 Hz, from Lattimer and Prakash
(L&P) (Lattimer and Prakash, 2004) and from the present work (PW) (for more details see
Appendix 9.1), is presented with the curved dashed-dotted lines. The two indicated solid lines
correspond to the EoS with appearance of hyperons at high densities (FSU2H) and the one
suitable to describe quark stars (QS57.6).

51



52 Ph.D. Dissertation

5.2 Keplerian frequency

The derivation of the Keplerian frequency, in which a rotating star would shed matter at its
equator, is a complicated problem. In Newtonian theory has its origin on the balance between
gravitational and centrifugal forces and takes a very simple form. However, in General Relativity
(GR) exhibits a more complicated dependence on the structure of the star through the interior
metric as it is expressed as a self-consistency condition that must be satisfied by the solution to
Einstein’s equations.

It has been shown by Friedman et al. (Friedman et al., 1988) that the turning-point method,
which is leading to the points of secular instability, can also be used in the case of uniformly
rotating neutron stars. With this consideration, in a constant angular momentum sequence, the
turning-point of a sequence of configurations with increasing central density, separates the secular
stable from unstable configuration and consequently, the condition

OM (e, J)

= 5.1
o 0 (5.)

J=constant

where €. is the energy density in the center of the neutron star and J is the angular momentum,
defines the possible maximum gravitational mass. In general, gravitational (gr) and rest mass
(rm) are defined as (Haensel et al., 2007)

R
My = /47rr2e(r)dr, (5.2)
0
R
Mm = ma / e D) L, (5.3)
Jo (1 _ 2G];I(r))

where m 4 is the baryonic mass and n(r) is the baryon number density.

The absence of analytical solutions for rotating neutron stars leads to numerical estimations
for the Keplerian frequency. A significant number of empirical formulas for the Keplerian
frequency had been produced along the years. The formula is given by (Haensel et al., 2009;
Haskell et al., 2018)

M \Y? 710 km\ */ .
where
o N\ 1/2 3/2
o (M 2 110 km\ ¥ 55)
max M@ R],orf‘ax b) .

and « (st : static, rot : rotating, rm; rot : rest mass at rotating configuration) takes the form of the
corresponding configuration. Although this relation is well established, the unknown parameter
(C) depends highly on the various approximations and of course the selected EoSs.

It is worth pointing out that while the maximum rotation rate is an increasing function of the
EoS’s softness, the maximum mass is a decreasing one (considering a fixed mass). Therefore,
for a fixed gravitational mass M the softer EoS predicts the lower value of the radius R and
consequently, leads to higher values for fi. The latter it had been already noticed by Lattimer et
al. (Lattimer et al., 1990). These two constraints restrict the EoS in a narrow region. The above
statement is one of the main subjects of the present study.
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5.2.1 The Keplerian frequency, the maximum gravitational mass, and the
corresponding radius of non-rotating neutron stars

We studied the Keplerian frequency in correlation with the bulk properties of a non-rotating neu-
tron star and specifically on its gravitational mass and the corresponding radius at the maximum
mass configuration, using Equation (5.4) and o = st.

In Figure 5.2, the relation (5.4) with the corresponding parametrization, which can be found
in Table 5.1, is presented, updating the work of Haensel et al. (Haensel et al., 2009). The value
of the parameter Cg; is in very good agreement with the current EoSs to a linear term.
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Figure 5.2: Keplerian frequency dependence on the quantity x5, for the 23 EoSs (for more
details see Equation (5.5)). Dashed line corresponds to the best linear trend that fits the data.
The data from 23 hadronic EoSs are also presented with circles. The hyperonic EoS is indicated
with the square and the quark star EoS with the star. The solid line marks the work of Haensel et

al. (Haensel et al., 2009).

Table 5.1: Parametrization of Equation (5.4) for the different configurations. The relative error
(r.e.) between the data and fits is also presented.

@ Ca re.% CHaensel
st 1266.68 5.6 1220
rot 1781.90 <1 -
rm;rot 1644.75 2.2 -

5.2.2 The Keplerian frequency, the maximum gravitational mass, and the
corresponding radius of maximally rotating neutron stars

An interesting relation is also the one between the Keplerian frequency and the macroscopic prop-
erties of maximally-rotating neutron stars (maximum gravitational mass and the corresponding
radius). Using Equation (5.4) and « = rot, it is remarkable that in this scenario, as Figure 5.3(a)
shows, the linear fit between these quantities (fx, i, ) leads to nearly perfect results. The
parametrization can be found in Table 5.1.
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Figure 5.3: Keplerian frequency dependence on the quantity (a) 2™, and (b) zfma" for the 23
EoSs (for more details see Equation (5.5)). Dashed lines correspond to the best linear trend that
fits the data. The data from 23 hadronic EoSs are also presented with circles. The hyperonic EoS

is indicated with the square and the quark star EoS with the star.

5.2.3 The Keplerian frequency, the maximum rest mass, and the corre-
sponding radius of non-rotating neutron stars

In the macroscopic properties of a neutron star, rest mass plays an important role. In order
to understand the effects of the rest mass on the Keplerian sequence, the Keplerian frequency
dependence on the rest mass and the corresponding radius using Equation (5.4) and o = rm; rot
has been studied.

In Figure 5.3(b) is displayed the almost linear relation that holds on between these two
quantities (fx, Tmas_ ), enhancing with this way the existence of a relation between rest mass and
gravitational mass in neutron stars at the Keplerian frequency. The parametrization can be found

in Table 5.1.

5.2.4 Restmass and gravitational mass at the maximum mass configuration
of maximally rotating neutron stars

As a follow-up to Section 5.2.3, the rest mass dependence on the gravitational mass at the
maximum mass configuration for the Keplerian frequency has been studied. Figure 5.4 displays
the almost linear relation between these two quantities, as expected from Section 5.2.3.

The relation which describes our data is given via the form

M[l;ll‘l;};(rot ) Mr%r;x;rot
=1.17 , (5.6)
( Mg ( Mg

(the maximum possible error is less than 3.3%) concluding that the percentage difference between
these quantities is around 17%.

5.3 Moment of inertia and eccentricity

Rotating neutron stars can provide us with more quantities than non-rotating ones that we could
study. Among them, there is the moment of inertia and eccentricity. Both these quantities can
give us information about the deformation of the mass while its spinning.
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Figure 5.4: Rest mass dependence on the gravitational mass of a maximally-rotating neutron
star at the maximum mass configuration. Dashed line corresponds to the best linear trend that
fits the data. The data from 23 hadronic EoSs are also presented with circles. The hyperonic EoS
is indicated with the square and the quark star EoS with the star.

The moment of inertia (Cipolletta et al., 2015; Stergioulas, 2003), which have a prominent

role in pulsar analysis, is defined as

I=g (5.7
where J is the angular momentum and {2 is the angular velocity. This property of neutron stars
quantifies how fast an object can spin with a given angular momentum.

In particular, the moment of inertia dependence on the gravitational mass for the Keplerian
sequence has been studied. Figure 5.5(a) displays that all EoS present similar behavior. For
this reason, inside Figure 5.5(a), the moment of inertia values corresponding to maximum mass
configuration versus the corresponding gravitational mass are plotted. A relation, given by the
formula
Mr%r;)irot

I = —1.568 + 0.883 exp [0.7 (
©

)1 (1045 gr sz) , (5.8)
describes with high accuracy our data, concluding that moment of inertia, at the maximum mass
configuration for the Keplerian frequency, can provide a universal relation between moment of
inertia and the corresponding gravitational mass.

The dimensionless moment of inertia dependence on the corresponding compactness pa-
rameter (Lattimer and Schutz, 2005), has also been studied, which, in general, it is defined
as

=2
c
where R corresponds to the equatorial radius of neutron star.
Figure 5.5(b) presents a window where moment of inertia and compactness parameter can lie
(shadowed region), constraining both these quantities. There is an empirical relation, derived
from the data, that can describe this window. The form of this empirical relation is

(5.9)

I/MR? = oy + azf + asB® + auf® + as 8%, (5.10)

where the coefficients for the two edges are shown in Table 5.2. It is clear from Figure 5.5(b) and
Equation (5.10) that if we have a measurement of moment of inertia, or compactness parameter,
we could extract the interval where the other parameter can lie.
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Figure 5.5: Moment of inertia dependence (a) on the gravitational mass and (b) on the compact-
ness parameter of a maximally-rotating neutron star for the 23 EoSs. Dashed lines in the inside
figures correspond to the best fit in each case. The data at the maximum mass configuration are
also presented with circles in the inside figures.

Table 5.2: Coefficients of the empirical relation (5.10) for the two edges of the window presented
in Figure 5.5(b).

Edges aq Qo Qag Qy as
Upper 0.005 4.01 -24.79 86.66 -110.33
Lower 0.005 3.38 -17.45 49.68 -55.36

As a consequence, by constraining simultaneously these two quantities, constraints could be
imposed on the radius of neutron stars, which still remains an open problem.

From Figure 5.5(b), it is displayed that all EoSs present similar behavior. For this reason,
inside Figure 5.5(b), the dimensionless moment of inertia values corresponding to maximum
mass configuration versus the corresponding compactness parameter are plotted. A relation,
given by the formula

(I/MR?) = —0.006 + 1.379Bmax, (5.11)

max

describes with high accuracy our data, concluding that dimensionless moment of inertia, at
the maximum mass configuration for the Keplerian frequency, can provide a universal relation
between dimensionless moment of inertia and the corresponding compactness parameter.

Eccentricity, is the main quantity that is related to the deformation of the star. Rapid rotation
deforms the models of equilibrium and in order to see how these models change, the calculation
of the eccentricity is performed, which is given by the form (Cipolletta et al., 2015)

2
6:1/1—<T"°l> , (5.12)
Teq

where the 7,01 and r¢q are the polar and equatorial radius of the star, respectively.

For a schematic presentation of the energy inside a neutron star, Figure 5.6 presents the
contours of constant density of a neutron star model with central density equals to 101 gr cm—3,
both in the non-rotating case and in the rotating one with frequency equals to the Keplerian
frequency. For the sake of example the APR-1 EoS is being used.

Performing the same analysis as for moment of inertia, the eccentricity dependence on the
gravitational mass for the Keplerian sequence and the eccentricity values corresponding to
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Figure 5.6: Contours of constant density of a neutron star model with central density equals
to 10'5 gr cm~3, both (a) in the non-rotating case and (b) in the rotating one with frequency
equals to the Keplerian frequency for the APR-1 EoS. The axis had been scaled in a way that the
maximum radius corresponds to 0.5.

maximum mass configuration on the corresponding gravitational mass, have been studied, as
Figure 5.7 shows. A relation, given by the formula

MmaX)
emax = 0.799 + 0.01 < : (5.13)
Mg

describes with high accuracy our data, concluding that eccentricity, at the maximum mass
configuration for the Keplerian frequency, is an EoS-independent property.
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Figure 5.7: Eccentricity dependence on the gravitational mass of a maximally-rotating neutron
star for the 23 EoSs. (Inside) The eccentricity values as a function of the corresponding gravita-
tional mass at the maximum mass configuration. Dashed line in the inside figure corresponds to
the best fit. The data at the maximum mass configuration are also presented with circles in the
inside figure.

5.4 Kerr parameter

The Kerr space-time provided from the Einstein’s field equations, give us the so-called Kerr
black holes (Cipolletta et al., 2015; Lo and Lin, 2011). These rotating black holes can be fully
described from the gravitational mass (M) and the angular momentum (J). In order to have a
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meaningful Kerr black hole, the relation J > GM 2 /¢ (Kerr bound) must hold, or otherwise,
we have a naked singularity. A naked singularity is a black hole without a horizon and can
be considered as closed timelike curves, where causality would be violated. While there is no
rigorous proof from Einstein’s field equations, the cosmic-censorship conjecture implies that a
generic gravitational collapse cannot form a naked singularity (Virbhadra, 2009; Virbhadra and
Ellis, 2000, 2002; Virbhadra and Keeton, 2008). This is the reason why the astrophysical black
holes should satisfy the Kerr bound (Cipolletta et al., 2015; Lo and Lin, 2011).

The gravitational collapse of a massive rotating neutron star, constrained to mass-energy and
angular momentum conservation, creates a black hole with almost the same mass and angular
momentum as the prior neutron star. In this case, an important quantity to study, directly related
to black holes as well as neutron stars, is the dimensionless angular momentum (Chakrabarti

et al., 2014b), which is defined as
_ cJ
J= = (5.14)
GMg
and it is known as dimensionless spin parameter. As a consequence of this parameter, we can
define a new one, starting from the parameter «, which is the angular momentum in units of

mass and it is given by the form (Paschalidis and Stergioulas, 2017)

J GM32 1

=—=3 —. 5.15

a= =i (5.15)

As a follow, using Equation (5.15), the well-known Kerr parameter takes the form
2
a ¢ . Mg
= —— = e . ‘1
K oY ( i ) (5.16)

The dependence of this parameter on the gravitational mass at the Keplerian sequence can be
seen in Figure 5.8.

Although the meaning of this parameter in black-holes physics is so interesting and funda-
mental (there is a maximum value at 0.998 (Thorne, 1974)), that’s also the case for other compact
objects such as neutron stars. In order to find a way to constrain the value of the Kerr parameter
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Figure 5.8: Kerr parameter dependence on the gravitational mass of a maximally-rotating neutron
star. (Inside) The Kerr parameter values as a function of the corresponding gravitational mass at
the maximum mass configuration. The dashed line in the inside figure corresponds to the best
linear trend. The data at maximum mass configuration for the 23 hadronic EoSs are presented
with circles in the inside figure. FSU2H and QS57.6 EoSs are also indicated with the two solid
lines.
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in neutron stars, the dependence of this parameter on the total gravitational mass for the Keplerian
sequence has been studied. Figure 5.8 presents that the maximum value of the Kerr parameter
for neutron stars is around 0.75. While there is a number of EoSs that hold on near this value,
the maximum value achieved from HLPS-3. This EoS is the stiffest equation that we have and
produces maximum mass greater than all the others. Strictly speaking, if we consider this EoS
as the one that produces the maximum possible mass in the maximum mass configuration at
the Keplerian sequence, then we could constrain the maximum value of the Kerr parameter in
neutron stars.

Figure 5.8 displays also a window (shadowed region) where the Kerr parameter can lie. There
is an empirical relation, derived from the data, that can describe this window. The form of this
empirical relation is

Mm X

K = dy + d3 coth |:d3 ( - ):l , (5.17)
Mg

where the coefficients for the two edges are shown in Table 5.3. It is clear from Figure 5.8 and

Equation (5.17) that if we have a measurement of gravitational mass, or spin parameter, we could

extract the interval where the other parameter can lie.

Table 5.3: Coefficients of the empirical relation (5.17) for the two edges of the window presented
in Figure 5.8.

Edges d1 d2 d3

Upper 0.86 -0.12 1.54
Lower 0.86 -0.21 2.67

As a consequence, by measuring accurately and simultaneously these two quantities, we
could impose constraints on the EoS.

In addition, in Figure 5.8, the maximum values of the Kerr parameter versus the corresponding
gravitational mass are plotted. It seems that a linear relation holds between these quantities,
given by the equation

Kmax = 0.488 + 0.074 (Mma"> . (5.18)
Mo

There are two important reasons for constraining the Kerr parameter at neutron stars: First,
the existence of a maximum value at the Kerr parameter, can lead to possible limits for the
compactness on neutron stars; strictly speaking, the maximum value of the Kerr parameter for
neutron stars implies a maximum value on the possible maximum mass of rotating neutron stars
in the universe and second, can be a criteria for determining the final fate of the collapse of a
rotating compact star (Lo and Lin, 2011).

Finally, it is clear from Figure 5.8 that the Kerr parameter dependence on the gravitational
mass of a quark star is quite different than the one on neutron stars. The Kerr parameter of quark
stars can be significantly larger than the maximum value of this parameter on neutron stars. In
case of the hypeonic EoS, the dependence between gravitational mass and the Kerr parameter
exhibits similar behavior with the hadronic ones.

5.5 Constant rest mass sequences
The rest mass sequences, also called as time evolutionary sequences, based on an EoS, are

roughly horizontal lines that extend from the Keplerian sequence to the non-rotating end point
or at the axisymmetric instability limit (Cook et al., 1992, 1994a,b). The latter depends only
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on the rest mass value of the selected EoS. For a given EoS, the sequences that are below the
rest mass value that corresponds to the maximum mass configuration at the non-rotating model,
they have a non-rotating member, and as a consequence, are stable and terminate at the non-
rotating model sequence. These sequences are called normal sequences. Above this value, none
of the sequences have a non-rotating member. Instead, they are unstable and terminate at the
axisymmetric instability limit and called supramassive sequences. The onset that extends from
the maximum mass point on the non-rotating limit sequence to the one on the mass-shedding
limit sequence is the quasi-radial stability limit. The total region that models are unstable is
defined via the rest mass sequence that corresponds to the maximum mass configuration of the
non-rotating model, as Figure 5.9 shows (shadowed region). Above this value, the models have
masses larger than the maximum mass of the non-rotating model and in that case, are called
supramassive models (Friedman and Stergioulas, 2013). It should be noted that models to the
axisymmetric area of the shadowed region, which is not shown at the corresponding figures, are
also unstable.

To be more specific, if a neutron star spin-up by accretion and becomes supramassive, then
it would subsequently spin-down along the constant rest mass sequence until it reaches the
axisymmetric instability limit and collapse to a black hole. There is a case where some relativistic
stars could be born as supramassive ones, or even more, become one as a result of a binary merger.
In this case, the star would be initially differentially rotating and collapse would be triggered by
a combination between spin-down effect and viscosity (the force that driving the star to uniform
rotation) (Friedman and Stergioulas, 2013).

Although the sequence with rest mass corresponding to the maximum mass configuration of
the non-rotating model extends to the right area of the quasi-radial stability limit, the unstable
one, it is the last one that has a stable part (half of the sequence terminates at the maximum
mass configuration of the non-rotating model). While, below this sequence, all the remaining
ones are unconditionally stable against gravitational collapse, above this sequence, all sequences
would evolve toward catastrophic collapse to a black hole. Figure 5.9 displays that if we have a
neutron star with rest mass in the white region, it would evolve toward stable configuration at
the non-rotating sequence, but if we have a star in the shadowed region, it would subsequently
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Figure 5.9: Normal and supramassive evolutionary sequences of constant rest mass are presented
as the dependence of the (a) gravitational mass on the central energy density and (b) gravitational
mass on the corresponding radius for the APR-1 EoS. Non-rotating case is presented with the
solid curve while the maximally-rotating one with the dashed-dotted curve. Constant rest mass
sequences are presented with the dashed lines, where the rest mass value is also noted. The 716
Hz limit is also presented with the dashed-dotted-dotted curve. The quasi-radial stability limit is
presented with the dotted line.
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spin-up and evolve toward catastrophic collapse to a black hole (Lasky et al., 2014; Ravi and
Lasky, 2014; Shibata, 2003). The direction of evolution for constant rest mass sequences is noted
with the existence of an arrow on them.

In all cases, neutron stars which evolve along normal evolutionary sequences, never spin-
up as they lose angular momentum. In contradiction to neutron stars on normal evolutionary
sequences, neutron stars on supramassive ones, because their unstable portion is always at higher
angular velocity than the stable portion, at the same value of angular momentum, must spin-up
with angular momentum loss in the neighborhood of the stability limit. If the neutron star is
massive enough, then the evolutionary sequence (supramassive) exhibits an extended region
where spin-up is allowed. This effect may provide us an observable precursor to gravitational
collapse to a black hole (Cipolletta et al., 2015; Lo and Lin, 2011). The latter is shown clearly in
Figure 5.10(a).

Following the concept from Figure 5.10(a), the last stable rest mass sequence (LSRMS) for
the 23 hadronic EoSs, as shown in Figure 5.10(b), has been constructed. This sequence is the one
that divides the stable from unstable region, or in other words, the normal from supramassive
evolutionary sequences. In Figure 5.10(b), a window (shadowed region) where the last stable
rest mass sequence can lie is presented, and in fact, because the last stable rest mass sequence
is the one that corresponds to the maximum mass configuration at the non-rotating model, this
is also the region where the EoS can lie, constraining simultaneously the spin parameter and
the angular velocity. There is an empirical relation, derived from the data, that can describe this
window. The form of this empirical relation is

Q = (b + b2k 4+ b3K%) 10* (s71), (5.19)

where the coefficients for the two edges are shown in Table 5.4. It is clear from Figure 5.10(b)
and Equation (5.19) that if we have a measurement of angular velocity, or spin parameter, we
could extract the interval where the other parameter can lie.

As a consequence, by constraining simultaneously these two quantities, we could significantly
narrow the existing area of EoS.
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Figure 5.10: (a) Normal and supramassive evolutionary sequences of constant rest mass are
presented as the dependence of the angular velocity on the Kerr parameter for the APR-1 EoS.
Maximally-rotating case is presented with the dashed-dotted curve while the constant rest mass
sequences are presented with the dashed curves, where the rest mass values are also noted. The
quasi-radial stability limit is presented with the dotted curve. (b) Last stable rest mass sequences
for the 23 EoSs as the dependence of angular velocity on the Kerr parameter. Supramassive and
normal areas are shown to guide the eye. The maximum value of the Kerr parameter is also
noted.
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Table 5.4: Coefficients of the empirical relation (5.19) for the two edges of the window presented
in Figure 5.10(b).

Edges b ba b3
Upper 194 0.117 -1.058
Lower 135 -0.305 -0.449

5.6 Upper bound for density of cold baryonic matter

Although realistic EoSs are employed in order to solve numerically the equilibrium equations
in neutron stars, analytical solutions are far from being insignificant. Useful information can
be gained by the comparison between solutions of the Einstein’s field equations with numerical
solutions for different models of EoSs and the analytical solutions (Lattimer and Prakash, 2005).
Two classes derive from analytical solutions: (a) normal neutron stars and (b) self-bound neutron
stars. In the first case, the energy density vanishes at the surface where the pressure vanishes
and, in the second one, the energy density is finite at the surface.

In this work only the first case scenario will be studied. It is most natural to solve numerically
the TOV equations (Glendenning, 2000; Haensel et al., 2007; Shapiro and Teukolsky, 1983)
by introducing an EoS describing the relation between pressure and density which is expected
to describe the fluid interior. The other possibility is trying find out analytical solutions of
TOV equations with the risk of obtaining solutions without physical interest. Actually, there are
hundreds of analytical solutions of TOV equations (Delgaty and Lake, 1998; Kramer et al., 1980).
However, just few of them are of physical interest. Moreover, there are only three that satisfy
the criteria that the pressure and energy density vanish on the surface of the star and also that
they both decrease monotonically with increasing radius. These three solutions are the Tolman
VII, the Buchdahl and the Nariai IV (Moustakidis, 2017). The main difference between these
analytical solutions is related to the maximum value of compactness at which they took effect.
For example, the Buchdahl solution is applicable only for neutron stars with compactness up to
the value 5 = 0.17 and, in general, produces soft EoSs. The Tolman VII solution leads to even
stiffer EoSs and, consequently, is suitable to describe compact objects with compactness value
up to 8 = 0.34 (for more details see Ref. (Moustakidis, 2017)). The Nariai IV solution exhibits
similar behavior with the Tolman VII. In particular the Tolman VII is of great interest since it has
the specific property that the pressure and density vanish at the surface of the star. It has been
extensively employed to neutron star studies and the details of this analytical solution had been
given in Appendix 9.2.

It has been shown by Lattimer et al. (Lattimer and Prakash, 2005) that the Tolman VII solution
forms an absolute upper limit, which confirmed empirically by using a large number of EoSs, in
density inside any compact star (see also Ref. (Lattimer and Prakash, 2011; Zhang and Li, 2019)).
This is also the case for rotating stars with rotation rates up to the Keplerian (mass-shedding)
rate.

At that time, the maximum masses of the existed EoSs were fully included in the region
under the Tolman VII solution; the same holds for the rotating models. In recent years, new EoSs
have been introduced and old ones, that could not describe the maximum observed neutron star
mass (Antoniadis et al., 2013; Arzoumanian et al., 2018; Cromartie et al., 2019; Demorest et al.,
2010; Fonseca et al., 2016; Linares et al., 2018), have been rejected. In this work, using a total
of 23 hadronic EoSs that predict the observed maximum neutron star mass (Antoniadis et al.,
2013; Arzoumanian et al., 2018; Cromartie et al., 2019; Demorest et al., 2010; Fonseca et al.,
2016; Linares et al., 2018), it is confirmed that the Tolman VII curve marks the upper limit to the
energy density inside a star but without taking into account the rotation (Tolman VII can describe
the majority of them). When considering to add rotation to models, then this curve is not able to
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describe anymore the new data as they shift, concerning the plotted area, up and left. For this
reason, we propose here, that if there is a curve, like the Tolman VII solution, shifted to the right,
that would be a suitable solution to fully describe the maximum energy density inside a star. In
other words, the existence of this curve can help to form an absolute upper limit in density inside
any compact object.

The proposed expression, described by the form

M 105 grcm—3
— =425 ———— 5.20
Mo \/ s (5.20)

can fully describe both the non-rotating and maximally-rotating configuration. The advantages
of having this relation are that (a) it can describe the non-rotating configuration having as a guide
the corresponding maximally-rotating one (the Tolman VII analytical solution cannot describe
all of them, as displayed in Figure 5.11), and (b) it can also describe the maximally-rotating
configuration.

Figure 5.11 presents the results of the 23 hadronic EoSs, for the non-rotating and maximally-
rotating case, Cook’s (Cook et al., 1994a) and Salgado’s (Salgado et al., 1994a) data, Tolman VII
analytical solution and the proposed solution (5.20). The observed neutron star mass limits are
also presented to guide the eye.

The knowledge of the central density at the maximally-rotating case is important for studying
the pulsar’s time evolution. In particular, following the spin-down trail of a millisecond pulsar,
the central density increases and the highly compressible quark matter will replace the existed
nuclear matter. This effect is directly connected to the reduction of moment of inertia. Henceforth,
the central density can inform us on the appearance of a phase transition in its interior. The latter
can leads to the important back-bending phenomenon in pulsars (Glendenning, 1998).

Another interesting effect that presented via the Figure 5.11, is the connection that establishes
between gravitational mass at the maximum mass configuration and the corresponding central
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Figure 5.11: Gravitational mass dependence on the central energy density and the central baryon
density at the maximum mass configuration for the 23 EoSs at the non-rotating and maximally-
rotating case. Circles correspond to the non-rotating case, squares to the maximally-rotating
one, stars to Cook’s (Cook et al., 1994a) data and triangles to Salgado’s (Salgado et al., 1994a)
data. The horizontal dashed lines correspond to the observed neutron star mass limits (1.908 M),
2.01Mg, 2.14M¢ and 2.27M,). For comparison, the Tolman-VII analytical solution with the
dashed-dotted curve and the Equation (5.20) with the dotted one are shown.
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Figure 5.12: Constant rest mass sequences as the dependence of moment of inertia on the angular
velocity for five representative EoSs and with rest mass corresponding to (a) Mgy = 1.45M ),
(b) M%x = 2M, and (c) Mgax = 2.2M,. The data and fits for each EoS are presented with
the circles and the solid curve for the APR-1, the squares and the dashed curve for the BGP, the
triangles and the dashed-dotted curve for the BS, the stars and the dashed-dotted-dotted curve for
the PS and the diamonds and the dotted curve for W.

energy density. Besides the fact that can provide the absolute upper limit in density inside any
compact star, it can also directly connect the macroscopic properties of neutron star with the
microscopic ones.

5.7 Braking index

It is well-known that the angular velocity (2 of an isolated pulsar decreases very slowly with the
time. Various energy loss mechanisms are responsible for this effect, including mainly dipole
radiation, charged particles ejections and gravitational waves radiation (edited by W. Becker,
2009; Glendenning, 2000; Hamil et al., 2015; Lorimer and Kramer, 2005; Lorimer, 2008; Lyne
et al., 2014; Manchester et al., 2005; Weber, 1999). In this case, and in the most simple model,
the evolution of the angular velocity is given by the power law

. dQ n

Q= i Jar. (5.21)

The braking index, n, of a pulsar, which describes the dependence of the braking torque on

the rotation frequency, is a fundamental parameter of pulsar electrodynamics. Simple theoretical
arguments, based on the assumption of a constant dipolar magnetic field, predict n = 3. It is
easy to show that Equation (5.21) leads to the fundamental relation

Q0 301 + Q21"
N=—=3—-—F—""— 5.22
n®) = oI+ QI (522)
where dot corresponds to the derivative with time, I’ = dI/d) and I" = d?I/dQ?. Now,
considering the simple power law dependence I ~ Q*, the braking index takes the simple and
transparent value
n(Q) =3 -\ (5.23)

While for A = 0 (moment of inertia independent from angular velocity) the well-known
result n = 3 is recovered, in general it is expected that the inequality n(2) < 3 must hold. There
is a special case where for some reasons when the denominator of Equation (5.22) goes to zero,
then the braking index exhibits a singularity which leads to increasing of 2 with time (Bagchi
et al., 2015; Glendenning, 2000; Glendenning et al., 1997; Heiselberg and Hjorth-Jensen, 1998;
Weber, 1996; Zdunik et al., 2006). This is an interesting effect (which may be caused due to
a phase transition in the interior of a pulsar) but it would not be studied further in this work.



Chapter 5. Neutron stars with cold, catalyzed matter 65
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Figure 5.13: Braking index dependence on the angular velocity for the five representative
EoSs (APR-1, BGP, BS, PS and W) with constant rest masses. The solid curves correspond
to the M$ax = 1.45M, the dashed curves to the M$.x = 2M, and the dotted curves to the
Mg = 2.2M.

Instead, the effects of the EoS on the braking index as well as on the evolution of the angular
velocity of a pulsar, especially for very young, at their birth, with their angular velocity being at
the mass-shedding limit, have been studied.

In particular, the moment of inertia dependence on the angular velocity for five representative
EoSs and for three different values of rest mass, has been studied. In each case, a fit is produced,
as shown in Figure 5.12, according to the formula

I =g +grexplgzf), (5.24)

where g;, g, are in units of moment of inertia (10*>gr cm?) and g3 in units of time (s).

In order to see how the rest mass effects the braking index, Figure 5.13 presents the five
representative EoSs for the different rest masses.

From Figure 5.13, it is clear that the rest mass plays an important role on the braking index,
i.e. by increasing the rest mass value, the braking index decreases more sharply. This effect will
remain valid for all EoSs studied in this research.
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CHAPTER O

Neutron stars stability in terms of adiabatic indices

6.1 The adiabatic indices and the stability criterion

The starting point for determining the mechanical equilibrium of neutron star matter is the
well known TOV equations (Glendenning, 2000; Oppenheimer and Volkoff, 1939; Shapiro and
Teukolsky, 1983; Tolman, 1939). This set of differential equations describes the structure of a
neutron star. For a static spherical symmetric system, the metric reads as follows (Glendenning,
2000; Shapiro and Teukolsky, 1983):

ds? = —e’M2qt2 4 M) gr2 4 2 (d92 + sin? 9dd>2) ) 6.1

and the corresponding TOV equations take the form

dr c3r?

dP(r)  GE()M(r) (1 N 1;(())) (1 N 4;;3(())3 ) (1 _ 2GM<>) 62
dM(r)  drr?
&2

E(r). (6.3)

By introducing a realistic EoS for the neutron star (e.g., a dependence on the form P = P(€&)), the
TOV equations can be solved numerically. This EoS provides the relation between the pressure
and density of neutron star matter. Of course, one can try to find analytical solutions for the
TOV equations. However, it is worth pointing out that using the analytical solutions, although
each one describes equilibrium configurations, is insufficient to tell us if it corresponds to stable
ones (Tolman, 1939); this is the case also for any numerical solution. Straightforwardly speaking,
any unstable solution is not of physical interest.

Chandrasekhar, in order to solve the instability problem, introduced a criterion for dynamical
stability based on the variational method (Chandrasekhar, 1964a). In the present study, this
criterion will be presented with the help of the averaged (()) and the critical (v.,.) adiabatic
indices. To be more specific, the averaged adiabatic index is defined as follows (Merafina and
Ruffini, 1989; Moustakidis, 2017; Negi and Durgapal, 2001):

R 2
[ e D (S e ar

r2

R 2
/ e(>‘+3”)/2£ (d(TQe_”/Qg(r))) dr
0

(v = : (6.4)

r2 \ dr
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and the effective critical adiabatic index as

R R 2 242
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/0 e ) (dr(r e f)) dr . (6.5)

The Chandrasekhar stability condition leads to the inequality

() = Yer, (6.6)

while the case () = 7., corresponds to the onset of the instability (Merafina and Ruffini, 1989;
Moustakidis, 2017). According to Equations (6.4) and (6.5), the averaged and the critical adiabatic
indices are functions of the function £(r) as well as of the compactness parameter 3. In particular,
the lagrangian displacement away from equilibrium has the form ((r) = £(r)e~ ", where o
is the pulsation frequency of the oscillations. It is obvious from the lagrangian displacement
that o2 can take both positive and negative values. More specifically, a positive value of o2
corresponds to stable configuration while a negative to unstable one (Chandrasekhar, 1964a;
Kokkotas and Ruoff, 2001; Merafina and Ruffini, 1989). It is worth pointing out that the stability
condition (6.6) expresses a minimal and not just an external principle (Chandrasekhar, 1964a).

Yer

eCAM/2p(p 4 S)rQSQdT]

X

6.2 Trial functions

Moving on to the trial functions that appear in Equations (6.4) and (6.5), it is widely known that
there are infinite numbers of them. However, the most frequently used are the following:

&(r)y = re’/?, (TF—1) (6.7)
E(r) = re”/t, (TF-2) (6.8)
£r) = r(1+ar® +aor* +azr®) e/, (TF-3) (6.9)
£r) = r. (TF-4) (6.10)

Considering an adiabatic perturbation, the adiabatic index -y is defined as follows (Chandrasekhar,
1964a; Merafina and Ruffini, 1989):

P+ & (0P EN [vs\2

T=7p <8€)S(I+P>(c>s’ 61D
where derivation is performed at constant entropy S. Moreover, (vs/c)s = +/(OP/0E)g is the
speed of sound in units of speed of light. The speed of sound is an important quantity directly
related to the stiffness of the EoS and plays a significant role in the maximum mass configurations.
Since the adiabatic index is a function of the baryon density, it exhibits radial dependence and
provides local information for each neutron star configuration. Its values vary from 2 to 4 in most
neutron stars EoSs (Haensel et al., 2007). The adiabatic index is a constant in the specific case of
a polytropic EoS. The effective adiabatic indices, (-y) and ~..,., in contrast to v (Equation (6.11))
have a global character. Both are directly related to the neutron star EoS and the strength of the
gravitational field (see also Refs. (Bludman, 1973a,b; Chan et al., 1994; Herrera et al., 1989;
Ipser, 1970; Merafina and Ruffini, 1989; Moustakidis, 2017; Negi and Durgapal, 2001, 1999;
Sharif and Yousaf, 2015; Yousaf and Bhatti, 2016)).
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6.3 Analytical solutions and polytropic equations of state

Chandrasekhar, using the Schwarzschild constant-density interior solution, found that in the
Newtonian limit, the stability ensured when (Chandrasekhar, 1964a):

4 19
= -+ —26. 6.12
+ 5526 (6.12)

>
<'V> Z Yer 3

He employed the approximation that the adiabatic index + is a constant throughout the star (Chan-
drasekhar, 1964a). In particular, this approximation directly relates the EoS, which characterizes
the fluid, to a possible stable configuration. In addition, Chandrasekhar (Chandrasekhar, 1964a),
in the framework of the post-Newtonian approximation, using relativistic polytropes found the
relation A P

%=3+c<é>, (6.13)
where C' = 1.8095, 2.2615, 2.4968, 2.6325 corresponds to the polytropic index n = 0,1, 2, 3,
respectively, and P., &, are the central values of pressure and energy density. It should be
noted that the ratio P, /&, can also be mentioned as a relativistic index and closely related to the
compactness (. Similar results have also been found by Tooper in a series of papers (Tooper,
1964, 1965). Moreover, Bludman (Bludman, 1973a,b) studied the stability of general relativistic
polytropes and provided the formula

4 P, P.\?
e~ - 173 (=) —031 (=) . 6.14
Yo 3+ 73(&) 0.3 <€) (6.14)

It is worth extending all these previous studies in order to examine the dependence of 7., on the
compactness parameter S,y (as well as on the ratio P./E.) close to the instability limit, which
corresponds to the maximum mass configuration. Although the study concerning the Newtonian
or post-Newtonian case is universal, meaning that for low values of 3 (8 < 1), the dependence
of 7., 1s almost insensitive to the details of the EoS, this is not the case for high values of .
In this case, the structure of a neutron star and the corresponding values of 7, are susceptible
to the EoS. Since, especially for high values of densities, the uncertainty on pressure-energy
dependence is appreciable, an influence on the values of ., is expected. In view of the above,
it is concluded that possible constraints on [, may impose constraints on the high-density
behavior of the neutron star EoSs.

The stability of the equilibrium configuration by using the general properties of the central
density as well as those of the mass-radius relation (Weinberg, 1972) is also possible. In this
case, the configuration is stable when the inequality dM /dE. > 0 holds. Actually, this condition,
due to its simplicity, has been used extensively in the literature. However, it needs to be noted
that this condition is just necessary but not sufficient, and consequently, it is weak compared to
the criterion (6.6).

A brief discussion is presented considering the four analytical solutions of the TOV equations.
In the case of the Schwarzschild constant-density interior solution (hereafter Uniform), the
density is constant throughout the star (Schutz, 1985; Weinberg, 1972). Although this solution is
far from being realistic, it has been applied extensively in the literature due to its simplicity.

The Tolman VII solution has been extensively employed in neutron star studies. Actually, its
physical realization has been studied in detail in Ref. (Raghoonundun and Hobill, 2015). This
solution ensures the causality for 5 < 0.2698. However, useful information and predictions are
taken when applied for even higher values of 3 (see, for example, Refs. (Lattimer and Prakash,
2001, 2005; Moustakidis, 2017; Sotani and Kokkotas, 2018)).

Buchdahl’s solution (Buchdahl, 1959a,b) is applicable only for low values of the compactness
(B < 0.2) since for higher values, the speed of sound becomes infinite. However, its use helps
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to support the rest solutions’ findings even for low compactness values e.g., it forms a bridge
which connects the Newtonian and post-Newtonian limit with the relativistic one (Lattimer and
Prakash, 2001; Moustakidis, 2017; Papazoglou and Moustakidis, 2016).

The Nariai IV solution (Nariai, 1950, 1951, 1999), although is very complicated, it provides
useful insights because it is one of the physically interesting solutions. In this case, the energy
density and pressure are complicated functions of the parametric variable 7/, which is related to
the distance 7 (for the definitions of the involved functions and constants and more details, see
Ref. (Moustakidis, 2017)).

All these solutions have the required property that the derived density and pressure vanish at
the star’s surface (except for the Schwarzschild constant-density interior solution). Generally,
the selected solutions exhibit realistic behavior and can be used as a guide to establishing
universal approximations. In particular, while the unrealistic Uniform solution has been used by
Chandrasekhar (Chandrasekhar, 1964a) in order to prove his famous expression (6.12), its main
drawback is the infinite value of the speed of sound. In Tolman VII solution’s case, the causality
was ensured for 5 < 0.2698. However, useful information and predictions are taken when
applied even for higher values of 3. Thus, Lattimer and Prakash (Lattimer and Prakash, 2005)
have demonstrated, using the Tolman VII solution, that the largest measured mass of a neutron
star establishes an upper bound to the energy density of observable cold matter. Moreover, while
in the Nariai IV solution, the causality was ensured for 3 < 0.2277, its extension for higher
values was applied successfully (Lattimer and Prakash, 2005; Moustakidis, 2017; Papazoglou
and Moustakidis, 2016).

6.4 Maximum mass and maximum rotation frequency

It is known that rotation increases the maximum mass (M32) of a corresponding stationary

neutron star. In this case, we face two extreme configurations: (a) maximum mass M, and (b)
maximum rotation frequency fi.x (known as Kepler frequency) (Haensel et al., 2007). These
configurations do not coincide, but we do not differentiate them since they are very close to
each other (with high accuracy). Moreover, it was found that the maximum frequency can be
expressed, with high precision, in terms of mass and radius of the non-rotating configuration with
the maximum mass (see Ref. (Haensel et al., 2007) and references therein). A precise formula that
relates M2 to the maximum mass and the compactness parameter 552! of the static maximum
mass configuration, is found by Haensel et al. (Haensel et al., 1999; Haensel et al., 2016; Lasota

et al., 1996)

Mstat

max

M,
Fmax = 15.125 83/2(1 4 1.6164Bmay) ( © ) (kHz). (6.15)

It is worth pointing out the strong dependence of fi.x on 5528 and, consequently, via the adiabatic
index, on the high-density dependence area of the EoS. The above expression can be used to
constrain an absolute lower bound of the maximum frequency of rigid rotation (for example,
by measuring the upper bound on the surface red-shift of a non-rotating neutron star) and,

consequently, to impose valuable constraints on the EoS and vise-versa.

6.5 The effect of critical and average adiabatic indices

A large number of published realistic EoSs for neutron star matter based on various theoretical
nuclear models are employed. A calculation of the effective averaged and the critical adiabatic
indices for each configuration is performed, in addition to the adiabatic indices corresponding
to the maximum mass configuration. The calculation recipe is the following: Firstly, the TOV
equations are solved to determine the M-R dependence and the corresponding energy density and
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Figure 6.1: (a) Mass—radius trajectories for the selected EoSs. (b) The critical adiabatic index,
~er» as a function of the compactness parameter 3, for the selected EoSs (using the trial function
TF-1(6.7)). The results of the four analytical solutions, using for consistency the trial function
TF-1 (6.7), have also been included for comparison (for more details see text). The blue dots
correspond to the onset of instability as a result of the equality () = ~.,. The onset of instability
for the Tolman VII solution is indicated by a red star (for the TF-1).

pressure configurations. Mainly, the interest is focused on the maximum mass, the corresponding
radius, the ratio P./&,., and the corresponding compactness ( for each case. Secondly, the
determination of () and ,, is performed for each configuration. The onset of instability is found
from the equality () = 7. The corresponding compactness parameter denotes Spax-

A second criterion also defines the stability limit according to the equality dM /dE, = 0,
providing an additional value of 8 for the maximum mass configuration. Now, in general, since
() and ~, are functionals of the trial function £(r), it is expected that the calculated values of 3,
for the two methods, will not coincide. In these cases, it will be considered as the most optimum
trial function £(r), the one that produces values of /3, as close as possible to the second method.
In particular, it has been found that the trial function (6.7) (indicated as TF-1) is the optimal one,
leading to an error, in most cases, less than 1%.

Figure 6.1(a) shows the radius-mass relation using the selected EoSs. One can see that the
majority of the EoSs reproduce the recent observation of two-solar mass neutron stars. The
various predictions cover a wide range of the maximum neutron star masses and the corresponding
radii.

Figure 6.1(b) displays the dependence of 7., as a function of the compactness parameter 3
for all the employed EoSs by using the optimal trial function (6.7). In particular, for the trial
function (6.9) the parametrization a; = 1/10R?, as = 1/5R* and a3 = 3/10R° has been used.
The results of the four analytical solutions have also been included for comparison. The blue
dots correspond to all configurations with neutrally stable equilibrium as result of the equality
() = 7er- These configurations correspond to the one with the largest possible central density
reachable for stable mass configuration. In the case of the Tolman VII solution, the results using
the trial function TF-1 (6.7) have also been included. In this case, the red star indicates the onset
of instability and corresponds to 8 = 0.3475 and ., = 3.85. Remarkably, using the Tolman VII
solution leads to results very close to the predictions using realistic EoSs. The other two analytical
solutions (Buchdahl’s and Nariai IV) lead to a stable configuration in each case (Moustakidis,
2017). The Uniform solution is always used as a guide for stable configuration, mainly for low
values of the compactness 3 (see expression (6.12)).

The most distinctive feature in Figure 6.1(b) is the remarkable unanimity of all EoSs and
consequently the occurrence of a model-independent relation between ., and Spax, at least for
any stable configuration. The above finding is expected for low compactness values 3 (since all
EoSs converge for low-density values). However, this result was not apparent at high densities
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Table 6.1: The parametrization of the analytical formulae (6.16), (6.17) and (6.18) is using
realistic EoSs as well as four analytical solutions (using the trial function TF-1 (6.7)). The case
mentioned as Realistic EoS, reproduces the averaged results of the realistic equations of state.

Solution Yo Aq t1 As to Y0 Ch Co

Realistic EoS 1.23333 0.10425 0.11007
Tolman VII 1.18654 0.14938 0.15293 0.00011 0.03731 1.32055 2.45877 -0.36691

Buchdahl 1.04258 0.28285 0.27558 0.00792 0.07695 1.33344 2.25592 -1.28137
Nariai IV 1.13470 0.20200 0.16781 0.00015 0.04016 1.33094 2.68839 -0.45055
Uniform 1.18955 0.14587 0.17682 0.00009 0.04140 1.32743 1.94115 -0.08660

of the EoSs, where there is considerable uncertainty. In any case, as a consequence of the
convergence, most of the points indicate the onset of the instability, located in the mentioned
trajectory for low and high compactness values. In particular, it has been found that the simple
expression

Yer(B) = yo + Are?/", (6.16)

reproduces very well the numerical results due to the use of realistic EoSs. Equation (6.16) is the
relativistic expression for the critical value of the adiabatic index and can be considered as the
relativistic generalization of the post-Newtonian approximation (6.12). The parametrization is
provided in Table 6.1.

The results of the analytical solutions, in each case, can be parameterized according to the
expression (see details in Table 6.1)

Yer(B) = yo + Are?/" 4 AyeP/t2. (6.17)

There is a slight deviation between the results of the realistic EoSs and the analytical solutions
Tolman VII, Nariai I'V, and Buchdahl. It is worth noticing that the Tolman VII solution reproduces
the numerical results very well, especially for high compactness values. The analytical solutions
generally lead to lower values of the adiabatic index ~.;, compared to the realistic EoS. In
particular, the Uniform solution provides the lower limit for ., especially for high compactness
values and close to the instability limit. However, the general trend is similar and useful insight
can be gained concerning the reliability of analytical solutions. The stable configurations,
independently of the EoS, correspond to a universal relation between ., and 8. One can safely
conclude that 7., is an intrinsic property of neutron stars (likewise the parameter ), which
reflects the relativistic effects on their structure. In particular, ., exhibits a linear dependence
with [ in the Newtonian and post-Newtonian regimes but a more complicated behavior in the
relativistic regime.

The above finding may help impose constraints on the EoS of neutron star matter. For
example, the accurate and simultaneous observation of possible maximum neutron star mass and
the corresponding radius will constrain the maximum values of the compactness and, consequently,
the maximum value of the adiabatic index 7. In any case, useful insights may be gained by the
use of the expression (6.16) with the parametrization given in Table 6.1 (Realistic EoS).

In order to clarify further the effects of the trial functions £(r) on the results, Figure 6.2(a) is
presented. In particular, Figure 6.2(a) displays the dependence of the critical adiabatic index,
Yer» Which corresponds to the onset of instability (7.,=(7) at this point), as a function of the
compactness parameter 3y, using the selected trial functions (6.7), (6.8), (6.9) and (6.10). The
most distinctive feature, in this case, is the occurrence of almost linear dependence (in the region
under study, e.g., on the maximum mass configuration) between the adiabatic index and the
compactness Smax. The use of the trial function £(r) affects mainly the values of ., (for the
same Smax) but not the linear dependence.
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Figure 6.2: (a) The critical adiabatic index ., as a function of the compactness parameter 3
for the selected EoSs. The points correspond to the onset of instability for the four selected trial
functions £(r). (b) The critical adiabatic index, -y, as a function of the compactness parameter 3,
for the selected EoSs, using the trial function TF-1 (6.7) (squares) and the optimal trial function
(OTF) in each EoS (dots). The expression (6.16) (the parametrization is provided in Table 6.1)
which reproduces the numerical results corresponding to the trial function (6.7) is also included.

Moreover, in Figure 6.2(b) it is displayed the 7, as a function of the compactness parameter
B, for the selected EoSs, using the trial function TF-1 (6.7) and the optimal trial function (OTF)
in each EoS, which corresponds to the one with the smallest error. The expression (6.16), which
reproduces the numerical results corresponding to the trial function (6.7), is also included. Using
the optimal trial function in each EoS the rearrangement of the results becomes more ordered.
However, the deviation from using the trial function TF-1 (which is the optimal one in most
cases) is negligible.

In Figure 6.3(a) it is displayed the dependence of ~,, on the ratio P./&. (which corresponds
to the maximum mass configuration). The symbols correspond to the results originating from the
use of realistic EoSs, while the results of the four analytical solutions have also been included
for comparison. Generally, in the case of realistic EoS, ., is an increasing function of the ratio
P. /&, without obeying in a specific formula. However, it has been found that the expression

P, P\’
Yo =0 + C1 <5> + Cs <g> , (6.18)

reproduces very well the numerical results of the analytical solutions. The parameters g, Cy, Cs
are displayed in Table 6.1. In Figure 6.3(b) displayed the dependence of . on M. In
Figure 6.3(c) is plotted the ~, as a function of the radius corresponding to the maximum mass
configuration, Ry.x. In these cases, the dependence is almost random and, consequently, is
unlikely to impose constraints from these correlations.

It is known that for low values of 5 (in the framework of Newtonian and post-Newtonian
approximation), there is a straightforward and universal linear correlation between [ and the
ratio P./&.. In particular, in the case of the analytical solutions of the TOV equations (Uniform,
Tolman VII, Buchdahl’s, and Nariai IV), we get in each case, by employing a Taylor expansion,

the approximated simple relation
P B
-~ —. 6.19
g <3 (6.19)

Moreover, in the case of the Newtonian limit, e.g., using the Lane-Emden equation with the
polytropic EoS, P = K (€/c2)F = K(E/c?) =, that is

1d _,do .
S (6.20)
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Figure 6.3: (a) The critical adiabatic index, 7., as a function of the ratio P, /&, for the selected
EoSs (the dots correspond to the onset of instability in each case) and for the trial function
TF-1 (6.7). The results of the four analytical solutions have also been included for comparison.
(b) The 7., as a function of the maximum mass, My.x, for the selected EoSs, (c) the -y as a
function of the radius, R, corresponding to M,y for the selected EoSs, and (d) the ratio P, /&,
as a function of the compactness parameter, (3, for the selected EoSs while the results of the four
analytical solutions have also been included for comparison.

with 6(&y) = 0, we get for the total mass and radius (Shapiro and Teukolsky, 1983)
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where F(&y,n) is a function of &, and the polytropic index n. More precisely, it has been
found that for n = 0,0.5,1,1.5,2, 3,4 (correspondingly I' = o0, 3,2,5/3,3/2,4/3,5/4) the
respectively function is F (&, n) = 1, 0.97, 1, 1.077, 1.204, 1.709, 3.332. Concluding, for
0 <n <2, the F(§,n) ~ 1.

Since it is worth examining this dependence in the relativistic limit, Figure 6.3(d) displays
the dependence of P./&. on the compactness Sy,y. Firstly, the symbols originated from using
realistic EoSs obey a general trend. A similar trend is obtained by employing analytical solutions.
In particular, the Tolman VII and Nariai IV solutions reproduce the results of realistic calculations
very well. Consequently, the Tolman VII solution may be used as a guide for an almost universal
dependence between P./E. and Sy that is in the critical point between stable and unstable
configuration. Moreover, this correlation may help to constrain the maximum value of the
ratio P./&. and, consequently, the maximum density in the universe with the help of accurate
measurements of the maximum value of the compactness.

More specifically, from recent observations of the GW 170917 binary system merger, Bauswein
et al. (Bauswein et al., 2017) propose a method to constrain some neutron star properties. In
particular, they found that the radius Ry« of the non-rotating maximum-mass configuration must
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be larger than 9.6f8:$i km. Almost simultaneously, Margalit and Metzger (Margalit and Metzger,
2017) combining electromagnetic and gravitational-wave information on the binary neutron
star merger GW170817, constrain the upper limit of M, according to M. < 2.17Mg. The
combination of the two suggestions leads to an absolute maximum value of compactness, which
is equal to Bax = 0.33370 005, The use of this value with the help of the Figure 6.1(b) and
Figure 6.3(d) will impose constraints both on the maximum values of the index ., and the
ratio P./E.. According to expression (6.16), constraint on the 7., can be imposed, which is
Yer,max = 3.3811”8‘_832, correspondingly to .. Even more, a large number of realistic EoSs
must be excluded. Some previous and recent efforts to constrain the compactness of neutron
stars, have been provided in Refs. (Alsing et al., 2018; Chen and Piekarewicz, 2015; Hambaryan
et al., 2017; Miller and Lamb, 1998; Ravenhall and Pethick, 1994; Rosso et al., 2017).

Figure 6.4(a) displays the dependence of the maximum rotating frequency on the critical
adiabatic index (it is wort to indicate, in order to avoid any confusion, that in the present study
M RS and B3t correspond t0 Minax, Rimax and Bmax, respectively). While fiax is an
increasing function of ., the relative correlation is not so restrictive. However, the most
important finding (see also the Figure 6.4(b)) is the derivation of an absolute lower upper bound
of the maximum rotation rate close to the value 1460 Hz. The observation of neutron stars
rotating with a spin f > 1460 Hz, will exclude a number of the selected EoSs. Figure 6.4(b)
also presents the dependence of fi.x on 552 while in Figure 6.4(c) the dependence of fiax
on the mass which corresponds to the static maximum mass configuration is provided. In this
case, the dependence is random. However, the dependence of fy,x on the radius, shown in
Figure 6.4(d), which corresponds to the static maximum mass configuration, exhibits a more
restrictive dependence. In particular, fi.« is a decreasing function of RS2 i.e., the maximum
rotation rate is expected to be observed in low-size neutron stars.

In any case, further theoretical and observational studies and refined combinations of them

are necessary before accurate, reliable, and robust constraints can be inferred.
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Neutron stars with hot and lepton rich matter

7.1 Single particle potentials and effective mass

Among the important tasks of this research, prominent position has the reliability of the im-
plemented nuclear model (MDI). As already mentioned, the MDI model reproduces accurately
the bulk properties of SNM at low densities (including saturation density, energy per particle,
incompresibility, etc.). This is important in order to ensure the credibility of the EoS at low
densities, a region which mainly relates to the radius of the star and the crust-core transition
densities. In addition, the predictions of PNM have been compared with those originated from
the very recent state-of-the-art calculations (shaded region at Figure 4.2) (Piarulli et al., 2020)
(see also the relevant discussion at Section 4.2).

In order to further check the EoS, in Figure 7.1 is displayed the single particle potential
(SPP) of protons (neutrons) in SNM as a function of the momentum (Moustakidis, 2008). In
particular, the SPP is plotted for three values of the baryon density. In each case the results of
numerous models are also presented for comparison (Li and Machleidt, 1993; Wiringa, 1988).
It is observed that, although at the saturation density the SPP exhibits lower values, for higher
densities the results converge. Moreover, a mild dependence on the values of the momentum is
also presented, which is expected to be reflected to the dependence of the EoS on temperature.

In addition, the nucleon effective mass has been calculated. This property of nuclear matter
characterizes the momentum dependence of the SPP, as it provides useful information concerning
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Figure 7.1: Single particle potential of protons (neutrons) as a function of momentum in sym-
metric nuclear matter for MDI+APR1 EoS (solid line) and baryon density (a) n=0.16 fm~3, (b)
n=0.3 fm~3, and (c) n=0.5 fm—3. The dashed lines correspond to various nuclear models for
comparison from Refs. (Li and Machleidt, 1993; Wiringa, 1988). The inner figure presents the
Landau effective mass as a function of baryon density for the MDI+APR1 EoS.
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Figure 7.2: Isoscalar potential as a function of baryon density for the MDI+APR1 EoS (solid
lines) and momentum in the range [1 — 4] fm~!. For comparison the data of A14+UVII model
are also presented with dashed lines in the range [0.1 — 0.5] fm~3 (Wiringa, 1988).

the strength of the interaction among nucleons (Li et al., 2018). In general, the effective mass
m’ depends on the baryon density, the isospin asymmetry, and the momentum of the nucleons
and is determined by the momentum dependent single nucleon potential

m* my dU-(n,1,k)] "
A L AR LA 1
m. YRE T dk (.1

By employing the definition (7.1) at the Fermi momentum k£ = kp, analytical expressions for
the Landau effective mass are taken (see Section 2.1.5). In an inner window in Figure 7.1(a),
the effective mass of the nucleons is plotted as a function of the baryon density, which at the
saturation density n, was found to be m*/m, = 0.822.

Another microscopic quantity of interest is the isoscalar potential which is defined as Ujs, =
(Up + Up)/2 (Moustakidis, 2008). The momentum dependence of the isoscalar potential is
important for extracting information about the SNM. In order to provide an additional check
for the validity of the model parameters, which are customary, the calculation of the isoscalar
potential is performed. As a more stingiest test, it has been compared to the ones predicted
with the variational many body (VMB) theory (Li, 2004; Wiringa, 1988). Thus, in Figure 7.2 is
displayed the isoscalar potential as a function of the baryon density, at four values of the momenta
k in comparison to the VMB calculations (AV14 + UVII model). We found that the predictions
of the present work are in a very good agreement with the VMB predictions up to k& ~ 2 fm~!,
but also even for higher values of the momentum, where the tread is similar.

The nuclear symmetry potential (NSP), which refers to the isovector part of the nucleon mean-
field potential in isospin ANM, can also depend on the temperature. Most studies concerning
the NSP have been carried out for zero temperature, whereas the temperature dependence of the
NSP so far has received little theoretical attention. The NSP potential describes the difference
among the neutron and proton SPP in neutron-rich matter and has the form (Moustakidis, 2008)

Un(n,I,k,T)—Up(n,I,k,T)

Usym(n, I, k,T) = 57 . (7.2)

In Figure 7.3 is displayed the Ugym(n, I, k,T) as a function of Eyy, = #%k?/2m,, for
n = 0.16 fm=3, I = 0.4, and T = 0 MeV. The shaded region corresponds to empirical
constraints (related to the systematic analysis of a large number of nucleon-nucleon scattering
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Figure 7.3: Nuclear symmetry potential as a function of kinetic energy for MDI+APR1 EoS.
The shaded region represents the empirical constraints implied from nucleon-nucleon scattering
experiments and charge-exchange reactions at beam energies up to 100 MeV (Lane, 1962).

experiments and (p,n) charge-exchange reactions at beam energies up to 100 MeV) extracted
from the formula (Dalen et al., 2005; Lane, 1962; van Dalen et al., 2004; van Dalen et al., 2005)

USym(na Ia kv T) ~a— bEkina (73)

where a ~ 22 — 34 MeV and b =~ 0.1 — 0.2. The prediction of the present model lies inside
the empirical region, except for very low values of Eyj,. It is worth pointing out that with a
proper parametrization of the MDI model, we would be able to mimic the results, concerning all
SPP. However, in this study is focused on the predictions of the experimental properties of SNM
(saturation density, energy per particle etc.). The latter is the most important part and achieved
with high accuracy with the present model.

7.2 Free energy and proton fraction

A key quantity related to the calculation of the proton fraction via 3-equilibrium is the free
energy per particle. Figure 7.4 displays the free energy per particle as a function of the baryon
density for temperatures in the range [0, 60] MeV and the MDI+APR1 EoS for both (a) PNM
and (b) SNM (in the following, we refer only to the MDI+APR1 EoS). As is expected due to the
quantum character of the hadronic matter, thermal effects are more pronounced at low densities,
while at high densities, there is a tendency for convergence. Moreover for practical reasons, it is
convenient to have analytical expressions for the dependence of the free energy on both baryon
density and temperature. Following the suggestion of Lu et al. (Lu et al., 2019), the following
functional form is employed,

% (n,T) =ap + (al + a2t2) n 4+ azn™ + astln(n) + (a6t2 + a7t“8) /n, (7.4)
where ¢t = T//100 MeV, and F'/ A and n are given in units of MeV and fm~3, respectively. The
parameters a; of the fit, with ¢ = 0 — 8, for the SNM and PNM are listed in Table 7.1.

Equation (7.4) is an excellent parameterization of the free energy per particle in the range of
density 0.08 fm ™3 < n < 1 fm—3 and temperature 0 MeV < T < 60 MeV. In addition, through
Equation (2.50), the very good accuracy between the analytical and numerical calculation of the
entropy from Equation (2.10), is confirmed.
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Figure 7.4: Free energy per particle as a function of baryon density for (a) PNM and (b) SNM
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MeV. The cold configuration is presented by the solid line, while hot configurations are presented
by the dashed ones.

Table 7.1: Parameters of Equation (7.4) for PNM and SNM of MDI+APR1 EoS.

Parameters PNM SNM
ag 0.000 -12.000
a1 37.814 -54.000
a2 -117.379 -140.000
as 385.000 296.000
aq 2.079 2.261
as 150.000 211.000
ag -90.000 -64.000
ay 94.000 88.000

as 2.140 2.350
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The knowledge of the proton fraction is very important, since it is related not only to the
specific structure of a neutron star but also to the direct (nucleonic) URCA process (Yakovlev
and Pethick, 2004). Figure 7.5 displays the proton fraction as a function of the baryon density for
temperatures in the range [0, 60] MeV. Our predictions are very close to those found recently in
Luetal. (Luetal., 2019), where the authors employed a different nuclear model and approach. In
particular, while in the low-density region, the proton fraction is very sensitive to the temperature,
in the high-density region, the thermal effects are very mild. This is a direct consequence of the
similar sensitivity of the free energy per particle to temperature shown in Figure 7.4. Furthermore,
at a high temperature, the free symmetry energy plays an insignificant role, and, consequently,
the nuclear system tends to become more symmetric.

7.3 Equation of state and the thermal and adiabatic indices

Figure 7.6 displays the pressure as a function of the baryon density for (a) temperatures in
the range [0, 60] MeV and (b) lepton fractions and entropies per baryon in the ranges [0.2, 0.4]
and [1, 3] kp, respectively. In particular, it presents one EoS for the cold catalyzed matter, 10
isothermal EoSs, and 9 isentropic EoSs.
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Figure 7.6: Pressure as a function of baryon density for (a) temperatures in the range [0, 60]
MeV and (b) lepton fractions and entropies per baryon in the ranges [0.2,0.4] and [1, 3] kp,
respectively. The cold configuration is presented by the solid line, while hot configurations are
presented by the dashed ones.

In order to study in detail the effects of the temperature on the EoS, Figure 7.7 displays the (a)
energy density and (b) pressure thermal components as functions of the baryon density. Both the
thermal energy density and pressure exhibit a non-monotonic density dependence behavior, with
this effect being rather significant in thermal pressure. In this case, while the individual thermal
pressures of protons and neutrons at fix partial densities are increasing, the isospin asymmetry is
decreasing with temperature, which reduces the total baryon pressure; an effect which is also
presented in Figure 7.5.

The next functional step is studying the thermal index, a quantity which fully relies on the
energy and pressure thermal components. In Figure 7.8 is displayed the thermal index as a
function of the baryon density for temperatures in the range [1, 60] MeV. An important density
dependence is clearly presented, especially for temperatures in the range [1, 30] MeV. At higher
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Figure 7.7: Thermal component of (a) energy density and (b) pressure as a function of baryon
density for temperatures in the range [1, 60] MeV.
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Figure 7.8: Thermal index as a function of baryon density for temperatures in the range [1, 60]
MeV. Black circles represent the central baryon density at which the maximum mass configuration
appears.

temperatures (7' > 30 MeV), the thermal index has an almost constant value, as its density
dependence is rather insignificant.

We note here that due to the thermal effects that have been analyzed, Equation (2.74) might
be strongly violated, in particular for EoSs with low values of temperatures (7' < 10 MeV) and,
as a consequence, low values of proton fraction, where the energy density and pressure thermal
components might even become negative (Lu et al., 2019).

In the case of isentropic EoSs, both the adiabatic index and the speed of sound have been
studied. In Figure 7.9(a) is displayed the adiabatic index as a function of the baryon density for
lepton fractions and entropies per baryon in the ranges [0.2, 0.4] and [1, 3] kp, respectively. For
a constant lepton fraction, the decreasing of the entropy per baryon leads to higher values of the
central baryon density at which the maximum mass appears.

In addition, Figure 7.9(b) presents the square speed of sound in units of speed of light as a
function of the baryon density. In this scenario, no EoSs, including the one with cold catalyzed
matter, ever exceed the causality limit (see also (Heiselberg and Hjorth-Jensen, 2000)). It has to
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function of baryon density for lepton fractions and entropies per baryon in the ranges [0.2, 0.4] and
[1, 3] kp, respectively. Black circles represent the central baryon density at which the maximum
mass configuration appears. The cold configuration is presented by the solid line.

be emphasized that one of the major advantages of the MDI model is to prevent the EoS from
reaching the causality point. The latter is effective even to higher values of neutron star baryon
density than the ones that correspond to the maximum mass configuration.

7.4 Thermal effects on non-rotating neutron stars

We now concentrate our study on the bulk properties of non-rotating neutron stars at the maximum
mass configuration. In Figure 7.10 is displayed the gravitational mass as a function of the
corresponding equatorial radius for temperatures in the range [0, 60] MeV. It is worth clarifying
that the nonhomogeneous nuclear matter phase disappears when the temperature is higher than
T ~ 15 MeV. To be more specific, the critical temperature 7, where this transition (known as
liquid-gas phase transition) is achieved is model-dependent. However, a well accepted value is
close to T, = 15 MeV (Haensel et al., 2007; Shen et al., 1998).

We found that in the case of the maximum gravitational mass, thermal effects are negligible.
In particular, while the introduction of temperature (17" = 1 MeV) leads to a lower maximum
gravitational mass than the cold neutron star, the increase of temperature leads to an increasing
behavior of the maximum gravitational mass. The above results confirm similar studies concern-
ing thermal effects on the maximum neutron star mass (Burgio and Schulze, 2010; Burgio et al.,
2007; Figura et al., 2020; Lu et al., 2019; Nicotra et al., 2006). However, thermal effects appear
to be more important for the radius of neutron stars. For a neutron star with My = 1.4 M,
the radius can reach values even twice the radius of the cold one. It is worth noting that after
T = 20 MeV, there are no configurations for a neutron star with My = 1.4 M. Moreover,
the maximum baryon mass decreases with increasing temperature up to 7' = 40 MeV, while
for higher temperatures, a relatively low increase is observed. We concluded that hot neutron
stars can exist with maximum baryon masses at lower values compared to the cold ones. These
bulk properties are summarized in Table 7.2. It has to be noted here that in the case of a very
hot neutron star (1" = 60 MeV), the central density is ~ 24% lower compared to the cold case.
The reason is that while the gravitational masses are comparable, the corresponding radius at
T = 60 MeV is ~ 35% higher than the cold case. In particular, at higher temperatures, thermal
pressure, which added to the baryonic one, becomes appreciable and pushes the neutron star
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Figure 7.10: Gravitational mass as a function of equatorial radius for temperatures in the range
[0,60] MeV at the non-rotating configuration. The cold configuration is presented by the solid
line, while hot configurations are presented by the dashed ones. The shaded regions from bottom
to top represent the PSR J1614-2230 (Arzoumanian et al., 2018), PSR J0348+0432 (Antoniadis
et al., 2013), and PSR J0740+6620 (Cromartie et al., 2019) pulsar observations for possible
maximum mass. Black diamonds correspond to the maximum mass configuration in each case,
while black crosses correspond to the minimum mass configuration. (The remaining minimum
masses are positioned at higher values of equatorial radius.)

matter against gravity. In this case, while gravitational mass is almost unaffected, as it is mainly
determined by the high-density behavior of the EoS, the radius of the star, which is determined
by the low- and intermediate-density domain of the EoS, increases appreciably. As a result, the
central baryon density of a hot neutron star decreases compared to the cold one.

By considering an isentropic EoS, the mentioned quantities alter in correspondence to lepton
fraction and entropy per baryon. For a visual effect, Figure 7.11 displays the gravitational mass as
a function of the corresponding equatorial radius for lepton fractions and entropies per baryon in
the ranges [0.2,0.4] and [1, 3] kp, respectively. In particular, EoSs with constant lepton fractions
are compared. The increase of the entropy per baryon in neutron stars leads to lower baryon
masses, as well as lower central baryon densities. In contrast to these quantities, the maximum

Table 7.2: Summary of non-rotating isothermal neutron star bulk properties. The properties
correspond to the maximum gravitational mass configuration.

T Mmax Mmax Runax ng Ri4
(MeV) (M) (M) (km) (fm=3) (km)
0 2.622 2.202 10.734 1.038 12.353
1 2.599 2.195 10.809 1.034 12.633
2 2.567 2.195 10.963 1.031 13.321
5 2.501 2.195 11.407 1.000 15.150
10 2.427 2.197 12.044 0.958 18.315
15 2.380 2.199 12.520 0.937 21.676
20 2.345 2.203 12.869 0.934 25.922
30 2.310 2212 13.650 0.885 -

40 2.307 2.223 13.981 0.865 -

50 2.313 2.235 14.312 0.839 -

60 2.342 2.244 14.497 0.785 -




Chapter 7. Neutron stars with hot and lepton rich matter 85

— se0 - s-2 — s=0 - §=2 — §=0 - §=2
- §=1 s=3 —--- §=1 5=3 —-- 8=1 s=3

2 25
o ) o
g 2 g
~ 20F — 20F ~ 20F
2 2 2
< = <
2 = 2
=15 = 150 =15
£ £ £
2 2 2
= s k5]
= 10F =2 10f = 10F
= = =
it £ i1
o &} o
0.5 PSR J1614-2230 0.5~ PSRII614-2230 05 PSRJIGI
PSR 1034840432 PSR 1034840432 PSR 1034840432
PSR 1074046620 PSR 1074046620 PSR 1074046620
o IV o TV o I
08777012 1416 18 20 22 24 26 28 3 1012 1416 18 20 22 24 26 28 3 087710712 1416 18 20 22 24 26 28 30
Equatorial Radius (km) Equatorial Radius (km) Equatorial Radius (km)

Figure 7.11: Gravitational mass as a function of equatorial radius for lepton fractions and
entropies per baryon in the ranges [0.2,0.4] and [1, 3] kp, respectively, at the non-rotating
configuration. The cold configuration is presented by the solid line, while hot configurations
are presented by the dashed ones. The shaded regions from bottom to top represent the PSR
J1614-2230 (Arzoumanian et al., 2018), PSR J0348+0432 (Antoniadis et al., 2013), and PSR
J0740+6620 (Cromartie et al., 2019) pulsar observations for possible maximum mass. Black
diamonds correspond to the maximum mass configuration in each case.

Table 7.3: Summary of non-rotating isentropic neutron star bulk properties. The properties
correspond to the maximum gravitational mass configuration.

Y, S M }1)11 ax M én:x Rimax nﬁ Te R4
(kp) (Mo) (Mo) (km) (fm™) (MeV) (km)

1 2.612 2.196 10.678 1.049 315 12.384

0.2 2 2.589 2213 11.335 0.946 66.2 13.744
3 2.530 2.251 12.188 0.913 129.7 17.749

1 2.515 2.149 10.678 1.075 29.6 12.920

0.3 2 2.485 2.161 11.103 1.037 63.5 14.303
3 2.440 2.192 12.141 0.941 108.3 18.305

1 2.430 2.110 10.712 1.110 28.5 13.679

0.4 2 2.398 2.120 11.154 1.071 59.9 15.316
3 2.354 2.147 12.208 0.972 97.8 19.922

gravitational mass, the corresponding equatorial radius, and the central temperature are increasing
as the entropy per baryon increases. As the center of the star becomes hotter with increasing
entropy per baryon, the baryon mass that it can withstand is lower. Last but not least, for neutron
stars with Mg, = 1.4 M, the radius is increasing, where for S = 3, it can be 61% greater than
the Ry 4 of the cold configuration. These bulk properties are summarized in Table 7.3.

Finally, it is worth pointing out that the maximum gravitational/baryon mass as a function of
temperature presents a strong dependence on the nuclear EoS (da Silva Schneider et al., 2020;
Kaplan et al., 2014; Raduta et al., 2020; Sumiyoshi et al., 1999).

7.5 Thermal effects on rotating neutron stars

In Figure 7.12 is displayed the gravitational mass as a function of the corresponding equatorial
radius at the mass-shedding limit for temperatures in the range [0, 60] MeV. In general, as the
temperature increases, the bulk properties of neutron stars at the maximum mass configuration'
are affected. In particular, the dependence of the baryon mass on the temperature exhibits

I At the mass-shedding limit, it is considered that maximum mass corresponds to Kepler frequency (Friedman and
Stergioulas, 2013).
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Figure 7.12: Gravitational mass as a function of equatorial radius for temperatures in the range
[0,60] MeV, at the rotating configuration with Kepler frequency. The cold configuration is
presented by the solid line, while the hot configurations are presented by the dashed ones. The
shaded regions from bottom to top represent the PSR J1614-2230 (Arzoumanian et al., 2018),
PSR J0348+0432 (Antoniadis et al., 2013), and PSR J0740+6620 (Cromartie et al., 2019) pulsar
observations with possible maximum neutron star mass. Black diamonds correspond to the
maximum mass configuration in each case, while the black cross corresponds to the minimum
mass configuration (the remaining minimum masses are positioned at higher values of equatorial
radius).

similar behavior with the non-rotating case. However, the gravitational mass is decreasing with
increasing temperature up to 7' = 30 MeV, while for higher values of temperature, an inverse
behavior is observed. Similar to the non-rotating case, while the introduction of temperature
(T = 1 MeV) leads to a lower value of the corresponding equatorial radius than the cold neutron
star, the equatorial radius follows an increasing path with the temperature, where for neutron stars
with My, = 1.4 M, it can reach several times the radius of the cold one with a dramatic increase.
These results play a significant role in the time evolution of hot and rapidly rotating neutron stars.
The temperature dependence of the maximum gravitational mass and corresponding equatorial
radius is well reflected on the corresponding temperature dependence of the rest of the neutron
star properties, including the central baryon density, Kepler frequency, Kerr parameter, moment
of inertia, and ratio of rotational kinetic to gravitational binding energy, as displayed in Table 7.4.

In the case of isentropic EoSs, where Figure 7.13 presents them, the increase of entropy per
baryon affects the neutron star bulk properties in the maximum mass configuration at the mass-
shedding limit. To be more specific, considering a constant lepton fraction, the bulk properties
under consideration are decreasing as the entropy per baryon; consequently, the temperature at
the center of the star increases. Exceptionally, the equatorial radius follows the opposite direction,
as it is increasing with the entropy per baryon. This effect is more pronounced at Mg, = 1.4 Mg,
where the radius can rise up to 49% of the cold star. These bulk properties are summarized in
Table 7.5.

7.6 Minimum mass of neutron stars

Apart from the maximum neutron star mass, the minimum one is also of great interest in astro-
physics. For reasons of completeness, the thermal and rotation effects on the minimum mass of
neutron stars are studied. The existence of a minimum neutron star configuration is a universal
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Table 7.4: Summary of uniformly rotating isothermal neutron star bulk properties at the mass-
shedding limit. The properties correspond to the maximum gravitational mass configuration.

T M;nax ]\/;nrdx Rmax ’llg R1.4 fmax }Cmax Imax T/W|max
MeV)  (Mp) (Mg)  (km)  (fm™%)  (km)  (Hz) (10%¥ kgm?)  (1071)
0 3.085 2623 14292 0.927 17.413 1689  0.692 3.949 1.299
1 2.983 2549 13.299 0.935 15504 1613 0.647 3.651 1.137
2 2.899 2508  13.848 0.877 16.446 1525  0.622 3.597 1.055
5 2.730 2419  13.887 0.879 18.501 1384  0.545 3.227 0.805
10 2.593 2364 13911 0.934 22520 1285  0.478 2914 0.612
15 2514 2338  14.340 0.934 26.895 1205  0.442 2.813 0.521
20 2.485 2348  17.011 0.911 37.543 1226  0.456 2.875 0.549
30 2427 2336 18.079 0.883 - 1123 0.422 2.873 0.470
40 2.427 2347  18.425 0.873 - 1090 0416 2.949 0.460
50 2.439 2365  18.920 0.848 - 1053 0.414 3.084 0.460
60 2.496 2403 19.793 0.762 - 1003 0.433 3.490 0.531
3 T T T T T 35 T T T T T T 3. T T T T T
b s-3 ] ok s-1 -3 ] , s-1 s-3 ]
° ° °
gz.sf B 5257 4 g:,sf 4
Eg 20F § 20F Y,=03 1 Eg 20F Y/=04
g 15F 4 _g LS 4 E 15k 4
‘%IO* H .‘glOf + fgl()f =l
&} &) &}
oSt eien: E ost it 0sp oo
e e et g g T e

Figure 7.13:

32
Equatorial Radius (km)

Equatorial Radius (km)

32
Equatorial Radius (km)

Gravitational mass as a function of equatorial radius for lepton fractions and

entropies per baryon in the ranges [0.2,0.4] and [1, 3] k, respectively, at the rotating configu-
ration with Kepler frequency. The cold configuration is presented by the solid line, while the
hot configurations are presented by the dashed ones. The shaded regions from bottom to top
represent the PSR J1614-2230 (Arzoumanian et al., 2018), PSR J0348+0432 (Antoniadis et al.,
2013), and PSR J0740+6620 (Cromartie et al., 2019) pulsar observations with possible maximum
neutron star mass. Black diamonds correspond to the maximum mass configuration in each case.

Table 7.5: Summary of uniformly rotating isentropic neutron star bulk properties at the mass-
shedding limit. The properties correspond to the maximum gravitational mass configuration.

i S My™ M} Run  n§ T.  Ria  fox Ko - T/W |
(kp)  (Mg) (Mg)  (km)  (fim™%) (MeV)  (km)  (Hz) (10 kgm®) — (1071)
1 3.050 2.599 14.028 0.958 29.6 17.498 1715 0.684 3.775 1.269
0.2 2 2.954 2.560 14.621 0.926 65.2 19.415 1594 0.641 3.694 1.107
3 2.808 2.517 15.970 0.879 1253 25912 1391 0.568 3.621 0.857
1 2.817 2.431 12.780 0.979 279 15.770 1575 0.601 3.158 0.976
0.3 2 2.743 2.407 13.314 0.940 59.5 17.590 1458 0.565 3.143 0.861
3 2.633 2.380 14.116 0.908 105.5  22.861 1261 0.493 3.104 0.651
1 2.733 2.398 13.906 1.052 27.5 19.454 1661 0.613 2.972 1.005
0.4 2 2.659 2.371 14.702 1.002 57.5 21975 1530 0.576 2.965 0.885
3 2.519 2.309 14.185 0.943 95.6 25020 1225  0.466 2.841 0.580
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feature, independent of the details of the EoS (Colpi et al., 1989), for example, the concept
of the minimum mass involved in the case of a neutron star in a close binary system with a
more compact partner (neutron star or black hole; (Suwa et al., 2018)). During evolution, the
lower-mass neutron star transfers mass to the more massive object, a process that ultimately
leads to approaching its minimum value. Finally, crossing this value, the neutron star reaches a
nonequilibrium configuration (Haensel et al., 2002). In particular, it is pointed out by several
authors that a neutron star will undergo an explosion if its mass drops to the minimum possible
equilibrium value (Blinnikov et al., 1984; Colpi et al., 1989; Colpi et al., 1991; Sumiyoshi et al.,
1998). In most studies, the minimum mass is studied in the framework of cold catalyzed nuclear
matter. In the present work, previous studies are extended in order to include rotation and thermal
effects, which are related to a more realistic process. The results are displayed in Table 7.6.

In the case of isothermal configurations, the increase in temperature leads to a significant
increase of the minimum mass, especially for high values of temperature. On the other hand, the
rotation effect is important only for high-temperature configurations. The latter occurs because of
the low values of Kepler frequency at low temperatures. In this case, the difference in minimum
mass between the non-rotating and maximally rotating configurations is almost imperceptible.

Similarly, in adiabatic cases, higher values of entropy per baryon lead to higher values of
minimum mass (for a constant lepton fraction). Moreover, for constant entropy per baryon,
neutron stars that are rich in leptons exhibit higher values of minimum mass. However, the
most distinctive feature in isentropic configurations is the negligible effect of the rotation on
the minimum mass, in most of the cases. The explanation of this behavior is similar to that of
isothermal cases, that is, the low corresponding values of Kepler frequency.

Table 7.6: Minimum mass of isothermal and isentropic neutron stars. The abbreviation “N.R.”
corresponds to the non-rotating configuration, while “M.R.” corresponds to the maximally
rotating one.

Myn T=0 T= T=2 T=5 T =10 T=15 T =20 T =30 T = 40
(Mg) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
N.R. 0.080 0.098 0.172 0.353 0.652 0.893 1.116 1.471 1.720
M.R. 0.081 0.098 0.172 0.356 0.671 0.915 1.142 1.545 1.848
T = 50 T = 60
(MeV) (MeV)
1.888 2.003
2.053 2.242
Y, =0.2 Y, =03 Y, =04
S=1 S=2 S=3 S=1 S =2 S=3 S=1 S=2 S=3
0.172 0.270 0.569 0.285 0.410 0.670 0.426 0.559 0.821
0.186 0.318 0.590 0.320 0.417 0.683 0.432 0.569 0.823

7.7 Sequences of constant baryon mass and the threshold mass
of cold, catalyzed neutron stars

Figure 7.14 displays sequences of constant baryon mass up to the one that corresponds to the
maximum gravitational mass configuration in the case of cold catalyzed matter. From these
sequences, it is clear that, differently from the gravitational mass where changes are negligible,
as the frequency decreases, starting from the Kepler frequency, the star gets considerably more
dense. The effect reaches its peak for baryon masses close to the one that corresponds to the
maximum gravitational mass configuration (M, = 2.62 My), and it will be reflected in the
particle composition and thermal properties. In addition, the region where a possible phase
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Figure 7.14: Frequency as a function of central stellar baryon density for constant baryon mass
sequences. The shaded region represents the forbidden region for the star, where the boundary
solid line marks the Kepler frequency. Arrows are shown to guide the evolution of the star. A
region where a possible phase transition may occur is also noted (Baym et al., 2018). In addition,
the central mass density is presented in the top axis corresponding to central baryon density.

transition may occur (0.72 fm =3 < ny < 0.88 fm—3; (Baym et al., 2018)) is indicated. The
results of Baym et al. (Baym et al., 2018) are only indicative and simply provide a possible
region of transition density (from baryonic to quark matter). Other similar studies predict
similar or different corresponding regions. Obviously, more robust (theoretical and experimental)
constraints concerning the phase transition are needed.

In this case, Figure 7.14 may help to indicate the expected region of the central densities (for
a constant baryon mass) where a possible phase transition may take place during the evolution
of a neutron star. In particular, this study may be useful for the evolution of pulsars and the
appearance of the back-bending process (Glendenning, 2000).

Finally, for a given cold, catalyzed EoS, one can define the threshold binary mass that
distinguishes the prompt (M$** > Mipyes) from the delayed (M3** < Mnyes) collapse. A relation
that describes the threshold mass as a function of the compactness was found recently in Koppel
et al. (Koppel et al., 2019) and is given by

1.01
Mipres = MI™ (3.06 — ————— |, 7.5
fhres — st (3 061 1.346max> (7:5)

where ( is the compactness parameter of the star, defined as

GM
===, 7.6
B=% (7.6)
and Bpax corresponds to the maximum mass configuration. In our case, employing the values of
MP*™ and Bmax, it has been found that Mines = 2.994 M. Although the remnant is expected to
rotate differentially and not uniformly, the threshold mass is presented in this study in order to
show that uniform rotation cannot reach the values of gravitational and baryon mass, as Table 7.4
indicates.
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7.8 Sequences of constant baryon mass on rotating neutron
stars at finite temperature

The sequences of constant baryon mass are a very useful way to study thermal effects on the
evolution and instability conditions of hot neutron stars. However, as isothermal EoSs have
been constructed, the same baryon mass configuration in the temperature range [0, 60] MeV
have been studied, and eventually constructed a sequence related to the cooling of a neutron star.
In particular, the quantities under consideration were the Kepler frequency, the central baryon
density, and the temperature of each EoS.

Figure 7.15(a) displays the Kepler frequency as a function of temperature for four baryon
masses. As the temperature increases, the Kepler frequency presents a reverse behavior. More
specifically, while until 7" = 15 MeV, the reduction of the Kepler frequency is rather abrupt, for
higher temperatures, a smoother one is observed. The dependence of the Kepler frequency on
the temperature is described by the formula

f(T)=ap+ a1 T2 + as explasT] (Hz), (7.7)

where f and T are given in units of Hz and MeV, respectively, and the coefficients a;, with
i = 0 — 3, are presented in Table 7.7.

In addition, Figure 7.15(b) displays the Kepler frequency as a function of the central baryon
density for four baryon masses. The central baryon density presents exceptional behavior in that
as the temperature increases, the central baryon density is also increased, but for high values
of temperature, it exhibits an inverse behavior. In any case, these effects are mild. However, it
is worth noticing that the corresponding effect is sizable, leading to a reduction of two to three
times the Kepler frequency. Furthermore, the most distinctive feature is the appearance of an
almost linear relation between the Kepler frequency and the central baryon density for a constant
value of temperature, especially for low ones. Moreover, and quite notably, it has been found
that for high values of temperature (7" > 30 MeV), every sequence of constant baryon mass not
only presents similar behavior but also moves along a linear relation described as

f(ng) = —473.144—&-2057.271715 (HZ), (7.8)
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Figure 7.15: Kepler frequency as a function of (a) temperature and (b) central baryon density for
constant baryon mass sequences. (a) Solid lines correspond to fits originated from Equation (7.7).
(b) The solid line corresponds to Equation (7.8) and open circles mark the high-temperature
region (1" > 30 MeV).
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Table 7.7: Coefficients of empirical relations (7.7) and (7.9) for baryon masses in the range
[1.6 — 2.2] M.

Coefficients Baryon Mass
1.6 Mg 1.8 Mo 2.0 Mg 2.2 Mg
ap (x102) 4.259 5.284 6.414 7.863
a; (x1073) -4.787 -3.202 -2.099 -1.443
a2 (><102) 5.401 4.929 4.363 3.530
az (x1071) -1.468 -1.443 -1.424 -1.636
bo (x10~1) 4273 4.466 4.798 5.470
by (x1072) -0.075 0.638 1.138 1.204
bs (x1076) -1.699 -1.754 -1.405 -0.926
bs (x10~2) -4.473 3512 -3.609 -6.640
by (x10~1) -3.299 -3.608 -3.357 -2.389
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Figure 7.16: Central baryon density as a function of temperature for constant baryon mass
sequences. Solid lines correspond to fits originated from Equation (7.9). The configuration
corresponds to the mass-shedding limit.

where f and n§ are given in units of Hz and fm 3, respectively. Equation (7.8) is very useful,
since it directly relates the Kepler frequency with the central baryon density of a very hot neutron
star, independently of the corresponding baryon mass. In addition, this relation defines the
allowed region for rotation with the Kepler frequency of a hot neutron star for a specific value of
the central baryon density, and vice versa.

Since it is interesting to study the dependence of the central baryon density on the temperature
(for a neutron star spinning with the Kepler frequency), Figure 7.16 provides the central baryon
density as a function of the temperature for four baryon masses. While for temperatures up to
T = 15 MeV, the central baryon density is increased, for higher ones, it follows the opposite
path, as its nonmonotonic behavior is presented. This behavior can be described by the formula

ng(T) = by + b T2 + b T3 + by exp[bsT]  (fm ), (7.9)

where nj and T are given in units of fm—3 and MeV, respectively, and the coefficients b;, with
1 = 0 — 4, are presented in Table 7.7.

It has to be noted that for a given value of baryon mass, the stability range of a neutron star is
defined in a specific temperature range. This is the reason why, in the corresponding figures,
there are no configurations for some temperatures and baryon masses.
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7.9 Moment of inertia, Kerr parameter, and ratio T/W on
rotating neutron stars

The study of rotating neutron stars offers much more information concerning the EoS compared
to non-rotating ones. The present work is focused on studying the moment of inertia, the Kerr
parameter, and the ratio of rotational kinetic to gravitational binding energy (T'/W) at the
mass-shedding limit.

Figure 7.17(a) displays the dimensionless moment of inertia as a function of the compact-
ness parameter for isothermal neutron stars. The dimensionless moment of inertia provides
an important constraint for the interior structure of neutron stars. Although for low values of
temperature, 7' < 2 MeV, the dimensionless moment of inertia is higher than the cold neutron
star, for temperatures 7' > 2 MeV, the reverse behavior is presented. This result points to the
conclusion that the increase of temperature, except for some specific cases (7' < 2 MeV), leads
to lesser compact objects than the cold neutron star.

Figure 7.17(b) displays the dimensionless moment of inertia as a function of the compactness
parameter for isentropic neutron stars. In general, the increase of the entropy per baryon with
a constant lepton fraction, leads to lesser compact objects with lower values to a dimensional
moment of inertia than the cold neutron star. There are some specific cases, Y; = 0.2 and 0.3
and S = 1, where these values exceed the limit introduced by the cold neutron star.

A quantity directly related to black holes and neutron stars is the Kerr parameter (dimension-
less spin parameter), which is defined as

c J c IQ
GIE - G (7.10)

K

Its importance lies with the mass-shedding limit, where it takes the maximum allowed value. As
shown in Koliogiannis & Moustakidis (Koliogiannis and Moustakidis, 2020), this limit represents
an indicator of the final fate of the collapse of a rotating compact star. In fact, it was found in a
recent work (Koliogiannis and Moustakidis, 2020) that the Kepler angular velocity for a cold

0.6¢ T T

f— T=0MeV  ---- T=20MeV (@)
[ ---- T=1MeV T=30 MeV
0.5F =77 T=2MeV T =40 MeV E E
F---- T=5MeV T=50 MeV ]
- T=10MeV T=60 MeV

02F E

i L L L L L L L
0.00 0.05 0.10 0.15 0.20 025 030 0.00 0.05 0.10 0.15 0.20 025 0.30
Compactness Compactness

Figure 7.17: Dimensionless moment of inertia as a function of compactness parameter for (a)
temperatures in the range [0, 60] MeV and (b) lepton fractions and entropies per baryon in the
ranges [0.2,0.4] and [1, 3] kp, respectively. The cold configuration is presented by the solid line,
while hot configurations are presented by the dashed ones. The configuration corresponds to the
mass-shedding limit.
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neutron star is given by an almost EoS-independent formula,

ML 10km | */?
a-oen (52) () 1

while the moment of inertia corresponding to the Kepler frequency is given by (see also (Shao
et al., 2020))

Iy
N (R =~ 1.379Bmax, (7.12)
where
G MM
Pinax = 5 ot - (7.13)

max

From Equations (7.10) - (7.12), it has been found that, in a very good approximation, the
Kerr parameter, at the Kepler frequency (mass-shedding limit) for a cold, catalyzed neutron star
is given by the simple universal expression

Ky =~ 134/ Brax. (7.14)

Considering that, for the majority of realistic cold EoSs, the relation 0.24 < Sy < 0.32 holds,
it has been concluded that 0.66 < K, < 0.76.

Figure 7.18(a) displays the Kerr parameter as a function of the gravitational mass for isother-
mal neutron stars. The effect of the temperature has a dramatic impact on the Kerr parameter. As
the temperature increases, the Kerr parameter follows a slightly decreasing trajectory, except
for T'= 60 MeV, a behavior that is also shown in Figure 7.18(b), where the Kerr parameter is
plotted as a function of temperature for constant gravitational masses. It has to be noted that after
T = 30 MeV, the Kerr parameter creates a plate for each gravitational mass configuration.
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Figure 7.18: (a) Kerr parameter as a function of gravitational mass for temperatures in the
range [0, 60] MeV. The horizontal dotted line marks the Kerr bound for astrophysical Kerr black
holes, g g, = 0.998 (Thorne, 1974). The shaded region represents the limits for neutron
stars from Equation (7.14). The cold configuration is presented by the solid line, while the hot
configurations are presented by the dashed ones. (b) Kerr parameter as a function of temperature
for constant gravitational mass. The crosses represent M, = 1.4 M), diamonds My = 2 Mg,
plus signs My = 2.2 M, and squares My = 2.3 M. The configuration corresponds to the
mass-shedding limit.
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Figure 7.19: Kerr parameter as a function of gravitational mass for lepton fractions and entropies
per baryon in the ranges [0.2, 0.4] and [1, 3] kp, respectively. The horizontal dotted line marks
the Kerr bound for astrophysical Kerr black holes, g . = 0.998 (Thorne, 1974). The shaded
region represents the limits for neutron stars from Equation (7.14). The cold configuration is
presented by the solid line. The configuration corresponds to the mass-shedding limit.

Figure 7.19 displays the Kerr parameter as a function of the gravitational mass for isentropic
neutron stars. In this scenario, the interplay between the entropy per baryon and the lepton
fraction leads to different behavior for the EoS. In particular, for a constant lepton fraction, as
the entropy per baryon increases, the Kerr parameter decreases.

Having a limit for Kerr black holes (Thorne, 1974) and one for neutron stars from Equa-
tion (7.14) (see also Koliogiannis & Moustakidis (Koliogiannis and Moustakidis, 2020)), these
values cannot be exceeded as the temperature in neutron stars increases. Therefore, the gravita-
tional collapse of a hot, uniformly rotating neutron star, constrained to mass-energy and angular
momentum conservation, cannot lead to a maximally rotating Kerr black hole. We note here
that in the cold neutron star, for My > 1 Mg, the Kerr parameter is almost independent on
the gravitational mass. However, the Kerr parameter, in the isothermal and isentropic cases,
is an increasing function of the gravitational mass. This unique interplay between the angular
momentum and the gravitational mass is rather significant as the temperature in the interior of
the neutron star increases.

Figure 7.20 display the angular velocity as a function of the ratio 7'/W for isothermal and
isentropic neutron stars. Nonaxisymmetric peturbations are a way for a neutron star to emit
gravitational waves. In neutron stars, the point that locates the nonaxisymmetric instability is
defined via the ratio of rotational kinetic to gravitational binding energy 7'/ . Instabilities driven
by gravitational radiation would set in at T'/TV ~ 0.08 for models with My, = 1.4 M (Morsink
etal., 1999). Figure 7.20 show that for sufficiently compact neutron stars (EoSs with 7' < 1 MeV
for isothermal and EoSs with Y; = 0.2 and S = 1 for isentropic), the nonaxisymmetric instability
will set in before the mass-shedding limit is reached. The information that can be gained is
that the maximum gravitational mass, as well as the angular velocity, for a specific EoS will be
lowered. Furthermore, the increasing of temperature for isothermal neutron stars leads to the
conclusion that for higher temperatures than 7" = 2 MeV, the instability never occurs. In the
case of isentropic ones, the increasing of entropy per baryon avoids the instability.

From the relevant analysis on the quantities of this section, useful insight can be gained for
the hot, rapidly rotating remnant (at least 7 > 30 MeV for isothermal EoSs, S = 1and Y; = 0.2
for isentropic ones) after the neutron star merger, which is a compact object with neutron star
matter. The evolution of the remnant (immediately after the merger) will be one of the following
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Figure 7.20: Angular velocity as a function of ratio of rotational kinetic to gravitational binding
energy for (a) temperatures in the range [0, 60] MeV and (b) lepton fractions and entropies
per baryon in the ranges [0.2,0.4] and [1, 3] kp, respectively. Black diamonds represent the
Mg = 1.4 Mg, configuration. The vertical dotted line marks the critical value, 7'/ = 0.08,
for gravitational radiation instabilities. The cold configuration is presented by the solid line,
while the hot configurations are presented by the dashed ones. The configuration corresponds to
the mass-shedding limit.

four cases: (a) the one that collapses directly into a black hole, (b) the one that initially forms
a neutron star but collapses during disk accretion, (c) the one that does not collapse to a black
hole until after the disk has fully accreted and the newly formed neutron star spins down, and (d)
the one that, even after spin-down, remains a neutron star (Bernouzzi, 2020; Fryer et al., 2015).
In the case where the two components of the binary neutron star system have nearly the same
mass, the merged object exhibits fast differential rotation. Then, depending on the strength of
the magnetic field, the object quickly goes into a uniform rotation. Moreover, neutrino cooling
is responsible for the redistribution of the angular momentum. This process has a very short
timescale (10-100 ms; (Bernouzzi, 2020; Fryer et al., 2015)). In general, the fate of the remnant
in a neutron star merger is a complicated problem, where its solution combines the use of a
reliable EoS and the development of corresponding simulations. Such studies are outside the
scope of the present work.

Considering the maximum mass configuration at the mass-shedding limit, constraints on
the hot, rapidly rotating remnant are possible through the dimensionless moment of inertia, the
Kerr parameter, and the ratio 7'/W. In these cases, the compactness parameter is constraint to
B0 < 0.19 and i < 0.27, while for the Kerr parameter, the maximum allowed value is at

rem — rem —
Ko, = 0.42 and K, = 0.68 (the superscripts “iso” and “ise”, correspond to isothermal and

isentropic profiles). Concerning the ratio 7'/W, the maximum value reaches up to (7/W )0 =

0.05 and (T'//W)i = 0.127. Considering all of the above, two different postulations, based on
isothermal and isentropic neutron stars, can be made for the aftermath of a neutron star merger.
In particular, in the isothermal case, it creates a lesser compact star than the cold neutron star with
lower values of maximum gravitational mass and frequency, where, for the isentropic aftermath,
the object is comparable to the cold one. In addition, while in the first case, the remnant that is
formed is highly stable toward the dynamical instabilities, in the second one, it is unstable.

However, it has to be noted that this analysis concerns the uniform rotation. These values are
expected to change if differential rotation is taken into account (Baumgarte et al., 2000; Morrison
et al., 2004).
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CHAPTER 8

Concluding remarks

In the first part of the research, different sequences of uniformly rotating neutron stars have
been constructed for a large number of hadronic EoSs based on various theoretical nuclear
models. This research performs an extended analysis of the bulk properties of neutron stars in
correlation with the mass-shedding limit (Keplerian frequency). To be more specific, a calculation
of their gravitational and rest mass, equatorial and polar radii, dimensionless angular momentum,
angular velocity, moment of inertia, and eccentricity was considered. Relations between the
Keplerian frequency and the bulk properties of neutron stars have been found and shown in
the corresponding figures. These universal relations may impose constraints on the radius of a
neutron star when its mass and Keplerian frequency is well fixed simultaneously. For example,
this is the case of a millisecond pulsar (in a binary system) which acquired angular momentum
by accretion and became a maximally rotating one with measured mass (Lattimer, 2017).

The dependence of moment of inertia, eccentricity, and Kerr parameter on the total gravita-
tional mass at the Keplerian sequence is also obtained. In all cases, the EoSs presented similar
behavior, so as a follow-up, the dependence of these parameters on the gravitational mass at the
maximum mass configuration has been studied. We have concluded that moment of inertia and
Kerr parameter can provide us with universal relations as a function of the gravitational mass at
the maximum mass configuration for the Keplerian frequency. The effect of the eccentricity at the
maximum mass configuration for the Keplerian frequency is also interesting on the corresponding
gravitational mass, where eccentricity behaves as an EoS-independent property. Moreover, it has
been found that the Kerr parameter reaches a maximum value at around 0.75 (stiffest EoS) for
neutron stars. The importance of this result falls under the fact that the gravitational collapse of a
uniformly rotating neutron star, constrained to mass-energy and angular momentum conservation,
cannot lead to a naked singularity, or in other words, a maximally rotating Kerr black hole (Lo
and Lin, 2011).

As a limiting case in our study, an EoS suitable to describe quark stars and one with the
appearance of hyperons at high densities are presented. In the non-rotating case, the results are in
good agreement with the hadronic EoSs, whereas in the maximally-rotating one, the difference
from linearity is noticeable. Moreover, concerning the Kerr parameter, it is undeniable that
its study on quark stars requires a different approach. Although a thorough study is needed,
it can be seen that the values of the Kerr parameter of quark stars are significantly larger, not
only from neutron stars but also from black holes. The latter can be helpful as an indicator to
identify maximally-rotating quark stars (Lo and Lin, 2011). However, a detailed study must
be done to acquire the EoS’s possible effects on quark stars and their similarities with neutron
stars. Concerning the hyperonic EoS, while its consistency with the 23 presented hadronic EoSs,
allows it to be studied with them, a detailed study mainly based on hyperonic EoSs, would be
more suitable.

97
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Normal and supramassive sequences of constant rest mass for a specific EoS have been
constructed. The corresponding figures present the stability and instability region of a neutron
star. This is possible by plotting the evolution of a neutron star along the constant rest mass
sequences. The extraordinary effect of supramassive ones is that they can inform us for the
gravitational collapse to a black hole. The gravitational collapse of a rotating neutron star to
a black hole creates a black hole with almost the same mass and angular momentum as the
initial star (small amount of total mass and angular momentum carried away by gravitation
radiation (Baiotti et al., 2005)), and therefore, the same Kerr parameter. Henceforth, this effect
may provide an observable precursor to the gravitational collapse to a black hole. It is essential
to add here that this effect will remain valid for all the EoSs studied in this research.

In order to imply possible constraints on the EoS, the LSRMS for the variety of the EoSs
and the dimensionless moment of inertia have been constructed. In particular, they are presented
in a figure of the angular velocity as a function of the Kerr parameter and of the dimensionless
moment of inertia as a function of the compactness parameter, respectively. In both cases, a
window is extracted where these properties can lie. In the first case, concerning the LSRMS,
because this sequence is the one that corresponds to the maximum mass configuration at the
non-rotating model, this is also the window where the EoS can lie, constraining simultaneously
the angular velocity and spin parameter (or Kerr parameter) on neutron stars. In the second case,
the formed window can help us constrain the moment of inertia and compactness parameter.
The latter can impose strong constraints on the radius of neutron stars, which is one of the open
problems in nuclear astrophysics.

Afterward, an update on the work of Lattimer and Prakash (Lattimer and Prakash, 2005) using
EoSs consistent with the current observed limits of neutron star mass (Antoniadis et al., 2013;
Arzoumanian et al., 2018; Cromartie et al., 2019; Demorest et al., 2010; Fonseca et al., 2016;
Linares et al., 2018), is made. In this work, we propose the possible existence of an empirical
solution, similar to the Tolman VII analytical solution, for neutron stars, using as a guide the
maximally-rotating configuration to describe both the non-rotating and the maximally-rotating
configuration. This solution can help define the ultimate density of cold baryonic matter by
setting an absolute upper limit at the central energy density. The latter can be a valuable insight
because it can inform us on the appearance of a phase transition in the star’s interior and its
leading to the back-bending phenomenon in pulsars.

Finally, the effects of the EoSs on the braking index of pulsars were studied. As an intrinsic
property of a neutron star’s structure, the braking index can inform us about the rate of change of
angular velocity. Although we know it is prolonged, after the 70% of Keplerian angular velocity,
the braking index is undergoing significant changes through the influence of the rest mass. This
specific area, from 70% through the 100% of Keplerian angular velocity, may provide useful
insights into the constitution of the dense nuclear matter.

In the second part of the research, a suggestion for a new method to constrain the neutron
star EoS utilizing the stability condition introduced by Chandrasekhar (Chandrasekhar, 1964a)
is presented. It has been found that the predicted critical adiabatic index, as a function of the
compactness, for most EoSs considered here (although they differ considerably at their maximum
masses and in how their masses are related to radii), satisfies a universal relation. In particular,
exploiting these results leads to a model-independent expression for the critical adiabatic index
as a function of compactness. The above finding may be added to the rest approximately EoS-
independent relations (Breu and Rezzolla, 2016; Maselli et al., 2017; Ravenhall and Pethick,
1994; Silva and Yunes, 2017; Silva et al., 2016; Yagi and Yunes, 2013a,b, 2017; Yagi et al., 2014).
These universal relations break degeneracies among astrophysical observations and lead to a
variety of applications. We also found that observations of highly rotating neutron stars may help
to impose valuable constraints on the EoSs, by using the dependence of maximum frequency on
the compactness parameter corresponding to the maximum mass configuration of a non-rotating
neutron star and, consequently, on the adiabatic index (instability limit). Additional theoretical
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and observational measurements of the bulk neutron star properties close to the maximum-mass
configuration will help to impose robust constraints on the neutron star EoS or, at least, to
minimize the numbers of the proposed EoSs.

The last part of the research is focused on hot nuclear matter. Thermal pressure support in the
isolated neutron stars and in the matter of merging (postmerger phase, remnant) must be better
understood. In this study, we have attempted to gain insight into these issues by constructing
and using a set of thermodynamically self-consistent EoSs (isothermal and isentropic) and
constructing non-rotating and uniformly rotating axisymmetric equilibrium sequences. Such
an approximation may be acceptable for a first-order study of hot, rapidly rotating remnants of
neutron star mergers and protoneutron stars.

The nuclear model, used in the present work, provides some advantages compared to other
models, mainly that (a) the thermal effects (both in isothermal and isentropic profiles) have been
included in a self-consistent way, (b) the model is flexible enough to produce EoSs from very
stiff to very soft by properly modifying the density dependence of the symmetry energy, (c) the
parameterization of the model is also flexible to reproduce the properties of other microscopic
calculations concerning both the SNM and the PNM, (d) the momentum dependence of the
potential interaction (which is absent in the majority of the proposed models) is in accordance
with the terrestrial studies and experiments of heavy-ion reactions for both low and high densities
and temperatures, and (e) the model ensures the causal behavior of the EoS at high densities
(even at densities higher than the ones of maximum mass configuration). Future work could
extend the applications on both prior and postmerger processes, including thermal effects on tidal
polarizability and other bulk properties, simulations of the evolution of the merger, and processes
of protoneutron stars and supernovae.

The LS220 EoSs are employed for the low-density region (n; < 0.08 fm~3) of hot neutron
stars. For each temperature or entropy per baryon, the lowest value of the baryon density is
defined at 107! fm—3. We found that the value of the mass is completely unaffected by the
specific choice of the lowest value of the baryon density located at the star’s surface. However,
as expected, the uncertainty on the value of the radius is not negligible, especially for high values
of temperature (or entropy per baryon), where estimations give rise to errors at a few percent,
obviously depending on the temperature (see also (Raduta et al., 2020)).

Neutron stars can rotate extremely fast at the stage of being born or in the process of merging.
While the Kepler frequency is an absolute limit on rotation, there are additional instabilities by
which rotation may be limited if they occur at lower frequencies. However, this study is focused
on the effect of thermal pressure. In particular, the thermal pressure becomes less important as
we reach the neutron star’s interior. However, this is not the case for the exterior region, where
the bloat of the envelope takes place (Kaplan et al., 2014). Hence, while hot configurations have
lower frequencies than cold ones in the case of isothermal neutron stars, isentropic neutron stars
can possibly exceed the cold limit.

The baryon mass is the dominant quantity that manifests the thermal effects in neutron stars.
The baryon mass that a neutron star can support depends sensitively on the temperature, as hot
neutron stars lead to lower baryon masses. Connecting this property with the merger remnant,
we study the supramassive limit. In the cold case, the baryon mass is 3.085 M), while a hot one
atT = 30 MeV is 2.427 M, and one at S = 1 is 3.05 M. These limits correspond to merger
components (assuming equal masses of components) of ~ 1.5425, ~ 1.2135, and ~ 1.525 M
baryon masses, respectively. In particular, the immediate aftermath of GW170817 (Abbott et al.,
2017) and GW 190425 (Abbott et al., 2020a) had created a hot, rapidly rotating remnant possibly
at its mass-shedding limit. Although it is most likely rotating differentially, the uniform rotation
approach can provide useful insight into the EoS. In the case of GW170817, a remnant with a
total mass of ~ 2.7 M, has been created. In correlation with the MDI+APR1 EoS, with respect
to baryon mass, while the uniform rotation of cold and isentropic neutron stars can support
this remnant, isothermal ones might not. Moving on to the GW190425 event, the remnant of
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~ 3.7 Mg cannot exist supported only by uniform rotation. However, if differential rotation
is added, leading to higher masses, hot neutron stars can probably support the remnant in both
cases.

A very recent event, GW 190814 (Abbott et al., 2020b), had a component with a mass of
~ 2.6 Mg. Until this moment, it was believed to be either the lightest black hole or the most
massive neutron star (Most et al., 2020). However, an approach in Most et al. (Most et al., 2020)
suggests that this star was rapidly spinning with K in the range [0.49, 0.68]. Our study fully
supports this scenario, as its mass and Kerr parameter coincides with the supramassive limit of
the MDI+APR1 EoS in both cold catalyzed and isentropic matter with S = 1 and ¥; = 0.2. The
latter may indicate that we have observed a neutron star close to or at its mass-shedding limit,
being one step closer to measuring the Kepler frequency and imposing additional constraints on
the EoS.

Moment of inertia is a quantity that informs us about the distribution of matter in the star
as it continuously changes its angular velocity and loses angular momentum due to radiation.
We observed that hot neutron stars, both isothermal and isentropic, have lower values than cold
neutron stars. This effect originates from the unique interplay between the gravitational mass
and the equatorial radius.

The Kerr parameter can be crucial as an indicator of the collapse to a black hole. Our relevant
study shows that the maximum allowed value for this parameter is defined via the cold neutron
star; thermal support indicates lower values of the Kerr parameter. The endpoint is that thermal
support cannot lead a star to collapse into a maximally rotating Kerr black hole. On the other
hand, the effect on the star is fascinating. Although in the cold case, after ~ 1 M), the Kerr
parameter is stabilized at a constant value, when the temperature is added, the Kerr parameter
becomes an increasing function of the gravitational mass, leading to a maximum value.

The evidence related to gravitational collapse to a black hole and the existence of stable
supramassive neutron stars is the ratio 7'/W. In the present study, the focus is turned on the case
of gravitational collapse. Taking into account only the instabilities originating from gravitational
radiation, the critical value of this ratio is ~ 0.08 for the M, = 1.4 M, configuration (Morsink
et al., 1999). As in the case of the Kerr parameter, thermal support leads to lower values for
the ratio 7'/W. Consequently, instabilities driven by gravitational radiation never occur in a
hot, rapidly rotating neutron star. However, in the specific cases of S = 1 with Y; = 0.2 and
T < 2MeV, the ratio T'/W deviates from the limit toward higher values. In this case, the critical
value of T'/TV may set the limit for the maximum gravitational mass and frequency. It is worth
mentioning that studies related to the effect of the temperature on the Kerr parameter and the
ratio T'/W are scarce, and their existence may open a new window in neutron star studies.

An effective way to interpret the effects of temperature on the EoS is the evolutionary
sequences of constant baryon mass. From these sequences, the interest is focused on the central
baryon density and its dependence on the Kepler frequency. Specifically, for temperatures
T > 30 MeV, a linear relation exists between these quantities, leading to a universal behavior
and description for the central baryon density at the mass-shedding limit. Finally, it is worth
mentioning that this relation defines the allowed region of the pair of the central baryon density
and corresponding Kepler frequency for a rotating hot neutron star at its mass-shedding limit.

Future work should address the above analysis by considering rotating configurations based
on differential laws in addition to the uniform rotation. Finally, the threshold mass, the hot, rapidly
rotating remnant, and the possible phase transition region should be thoroughly investigated, as
the LIGO and Virgo collaboration will provide us with more events of neutron star mergers.

In the near future, neutron star mergers and measurements of gravitational waves, besides
being a powerful tool to study compact objects, such as neutron stars and black holes, will
be able to provide us with the Keplerian frequency of these objects. In fact, although the
remnant formed in the immediate aftermath of the GW170817 merger is believed to have been
differentially rotating and not uniformly, it contains sufficient angular momentum to be near
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its mass-shedding limit (Lattimer, 2019). The observational measurement of the Keplerian
frequency, the temperature distribution in hot neutron stars, and the possible observable effects
for the phase transition, along with the theoretical predictions, would provide severe constraints
on the structure of neutron stars and especially on the high-density region of the EoS of nuclear
matter.

NOTE

Parts of the dissertation have been published in the following three research papers, namely

* P. Koliogiannis and C. Moustakidis, Constraints on the equation of state from the stability
condition of neutron stars. Astrophysics and Space Science, 364(3):52, Mar 2019 (Kolio-
giannis and Moustakidis, 2019)

» P.S. Koliogiannis and Ch.C. Moustakidis, Effects of the equation of state on the bulk
properties of maximally rotating neutron stars. Physical Review C, 101:015805, Jan
2020 (Koliogiannis and Moustakidis, 2020)

+ P.S. Koliogiannis and Ch.C. Moustakidis, Thermodynamical Description of Hot, Rapidly
Rotating Neutron Stars, Protoneutron Stars, and Neutron Star Merger Remnants. 7he
Astrophysical Journal, 912:69, May 2021 (Koliogiannis and Moustakidis, 2021)
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CHAPTER 9

Appendix

9.1 Observed frequency limit

Lattimer and Prakash derived a relation in Ref. (Lattimer and Prakash, 2004), which gives
the Keplerian frequency of a rotating neutron star, in terms of radius R and mass M of the
corresponding non-rotating neutron star. The relation is

M\Y? /10 km\ />
£, = 1045 <M®> (R) (Hz), 9.1)

which can be written as fi, =~ 0.5701 fs, where fg is the Keplerian rate for a rigid Newtonian
sphere, and it is given by the equation

MA\Y? 710 km */?
f3:1833(M®> (R> (Hz). 9.2)

Following the work of Riahi et al. (Riahi et al., 2019), in order to find a more accurate relation,
a relation have been constructed, based on a three order polynomial fit in terms of mass and
radius of the corresponding non-rotating neutron star, given by the form

i = o2 (30) () ] () ()]

¢ (2) ()]

with error up to 4%, in comparison with Lattimer and Prakash where the error was up to 30%.

For the observed frequency of the fastest known pulsar, PSR J1748-2446ad, which rotates
with a frequency of 716 Hz, the relation (9.3) is obtained and its schematic presentation is
presented in Figure 5.1.

9.2 Analytical solution - Tolman VII

The basic ingredients of the analytical solution - Tolman VII of Einstein’s equations for a non-
rotating spherical symmetric object, which in this case is a neutron star, are presented below.
The metric functions are defined as follows

e A =1-p2%5-32%), e’ = (1 - 55) cos? ¢, 9.4)
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where
T wp —w —1 B
= — = :t P
x R7 ¢ 2 +¢17 ¢1 an 3(1_25)
and
5 e~ 1 1-28
=In|2?- > — =In| = .
w=In|z 6+ 35 | w1 n<6+ 38 >

The energy density and the pressure read as

E(x) 9 _ 15Mc?
gc 7(17‘%)? gcf 87TR3’

P(x) 2 [3eX 1 2?

There are some constraints related to the validity of the Tolman VII - analytical solution. In
particular, the central pressure value becomes infinite for 5 = 0.3862, while the speed of sound
remains less than that of light only for 8 < 0.2698 (Moustakidis, 2017). This solution leads to a
stable configuration only for 5 < 0.3428 (Moustakidis, 2017).

The integrals’ numerical integration related to the definition of () and ~.; can be easily
performed. However, it is difficult to perceive the final results following this procedure. The
former is accessible only in some approximated cases, e.g., Newtonian and post-Newtonian
limits. In the following, we try to generalize the finding of Chandrasekhar (Chandrasekhar,
1964a) to even higher compactness values where the relativistic effects become important.
The expression of the critical adiabatic index, with the help of the TOV equations (6.2), (6.3),
using the trial function £(r) = re’/? (in order to be consistent with the pioneering work of
Chandrasekhar (Chandrasekhar, 1964a)), and performing a Taylor expansion inside the integrals
in each case, led to for the Uniform and the Tolman VII solution that is (see also (Merafina and
Ruffini, 1989))

(9.5)

4 38
’ycr(ﬁ) = § + Eﬁp(ﬁ)7 (97)

where, for the Uniform solution, P(f) takes the form:
Punitorm(8) = 1+ 2.138 + 4.653% + 10.223% + O(54), 9.8)
and for the Tolman VII solution:
Proiman(8) = 1.19 + 2.938 + 7.345% + 19.363% + O(8*). 9.9)

Obviously, the approximation (9.7)), using Equation (9.8), to a linear term, confirms the
Chandrasekhar expression (6.12). The above expressions are good approximations for 5 < 0.2.
However, they fail for higher values of 5 and, consequently, additional terms must be included.
Specifically, . increases very fast for 8 > 0.25 due to the strong effects of general relativity.

9.3 Matching process

We employ a thermodynamic consistency method to match the two EoSs (those corresponding
to the core and the crust) (Margaritis et al., 2021). In particular, the method is based on the
P(n) and n relation, where the baryon density n is considered an independent variable. A
detailed presentation of the method is given in Ref. (Fortin et al., 2016). In the first region,
which corresponds to the crust (hereafter denoted with the index 1), the relation Py (n) = Py(n)
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holds. In the second one, which corresponds to the core (hereafter denoted with the index 2), the
relation Peore(n) = P2(n) holds. Moreover, it is considered that the matching region (mr) lies
between the two densities n; and ns, where ny > nq, and the EoS is denoted as Pp(n). For
the matching region a linear dependence of P.,,(n) on n is employed and by considering the
continuity relations, Py(n1) = Pi(n1) and Py(ng) = Pa(ns), the relation for the matching
region is

Pmr(n):Pl(n1)+a(n_nl)a (910)

where
o Py(ng) — Pi(n1)
Ng — N1 '
In the matching region and considering that &y (n) = npme(n) — Pue(n) (Where p = d€/dn),
the chemical potential pi,(n) is given by

" anr
poe() = () + | (), ©.11)
where p11(n1) = (P + &1)/nq1 and
) = (o) + [ L), ©.12)

n1

However, in general, pm:(n2) # pa(ng) (where puo = (Py 4+ £2)/n2). In this case, in order to
satisfy the thermodynamically consistent EoS for n > no, the difference Ay = ppe(n2) — po(ng)
is defined.

Summarizing, the EoSs of each of the three regions, are specified as follows:
(1) For the crust (n < ni) the EoS given in Ref. (Baym et al., 1971) is considered.
(2) For the matching region (n; < n < ng) the pressure is given by Equation (9.10) and the

energy density by Emr(n) = npime(n) — Pur(n) where

pme() = p1(n1) + aln (n) ; (9.13)

ni

and also

Par(pt) = Pi(ny) + amy (e g 1) . (9.14)

(3) For the core (n > ny) the pressure Py (n) is employed while the corresponding energy
density £2(n) will be given by E2(n) = £(n) + nAp.

Finally, the speed of sound in the matching region will be given by the expression

vs _ [OP _ !
e~ Voe 7y 1+ aln(E)’ ©-15)

In a part of the research, three different kinds of matching are being employed. In the first one,
called TC,, the selected densities n; and no lie symmetrically among the critical density n;
within the crust and the core, respectively. In the second one, called TCs, the density of the core
no is identified as the transition density and n; lies in the crust, while in the third case, called
TCs, the crust density n; is identified with n; and ns lies in the core.
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9.4 Numerical Code

The general relativistic models of neutron stars have been calculated by means of the code
developed by Gourgoulhon et al. (Gourgoulhon et al., 1999), which relies on the multidomain
spectral method of Bonazzola et al. (Bonazzola et al., 1998). This code is based on the C++
library LORENE (LOREBE (LORENE, 1998)), a software package for numerical relativity freely
available under GNU license. The main characteristics of the numerical code are as follows.

* The EoS is a barotropic one, P = P(n), in a tabular form that includes the baryon density,
energy density, and pressure.

» The whole space is divided into three domains as follows:

— DI, the interior of the star;

— D2, an intermediate domain whose inner boundary is the surface of the star and outer
boundary is a sphere located at r = 2r¢q (Where 7¢q is the equatorial coordinate radius
of the star); and

— D3, the external domain whose inner boundary is the outer boundary of D2 and that
extends up to infinity.

* The mapping adaptation is using one domain.

*» The points in §, ¢, and r are Ny =1 x 25, Ny =1 x 1, and NV, = 3 x 49, respectively.

The initial frequency of the rotating star is 100 Hz and, in low-frequency areas (< 100 Hz),
10/50 Hz.

The global numerical error is evaluated by means of the virial identities, GRV2 and GRV3,
where the latter is a relativistic generalization of the classical virial theorem. For the
configurations presented in this research, the relative errors are of order 1075,
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