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Abstract

This work refers to the study of the 6Li+p system in inverse kinematics with the MAGNEX

spectrometer. The relevant experiment was visualized at the MAGNEX facility of Istituto

Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN - LNS), in Catania, Italy.

Beams of 6Li3+ were accelerated by the Tandem accelerator at the energies of 16, 20, 25 and

29 MeV and impinged on a CH2 target as well as on a 12C target for estimating the carbon

background. The experiment includes three different parts: the elastic scattering measurement,

the breakup measurement, and the measurement of the reaction p(6Li,3He)4He. The first two

are included in the present thesis, while the last performed with a DSSSD module, was the

subject of an M.Sc. thesis and was considered only in the discussion of the results.

Regarding the elastic scattering measurement, the elastically scattered lithium ions were

momentum analyzed by the MAGNEX spectrometer, spanning the angular range between

θlab=2o and θlab=10o, and were detected by its Focal Plane Detector (FPD). During the elastic

scattering measurement, MAGNEX worked in an almost full horizontal angular acceptance but

with a reduced vertical acceptance for protecting the focal plane detector from the elastic high

counting rate. This acceptance defined the solid angle for the elastic scattering measurement

and therefore deduced by the geometry of the applied slits. The beam charge was collected by

a Faraday cup, set at the entrance of MAGNEX, and its absolute value was cross-checked via

the measurement at the very forward angles were the elastic scattering is Rutherford.

The breakup measurement, performed at the energies of 20, 25 and 29 MeV, was an ex-

clusive measurement obtained with the detection of both breakup fragments in coincidence.

The alpha fragments were momentum analyzed by the MAGNEX spectrometer, spanning the

angular range between -1o and 10o, and were detected by its FPD. In this measurement, MAG-

NEX worked in a full horizontal angular acceptance, and a rather well open vertical acceptance

as the counting rate due to breakup was rather low. The elastic scattered 6Li ions were swept

out by the appropriate magnetic fields, allowing the detection of alphas in energy slices of

6.8 to 10.7 MeV, 8.4 to 13.3 MeV and 11.0 to 15.5 MeV, for the 20, 25 and 29 MeV runs,
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respectively. The second breakup fragment, deuterons, were detected in a silicon detector,

set at θlab = 5o (∆θlab=4.2o - 5.8o). This detector was masked, against Rutherford scattering

deterioration, by tantalum foils of appropriate thicknesses. These foils absorbed all lithiums

but allowed protons and deuterons to go through. Exclusive yields were determined for pairs

of angles every 0.5o for alphas detected by MAGNEX in the angular range 0o to 10o, combined

with deuterons detected at the fixed angle detector at 5o. The beam current was measured

by a Faraday cup, located inside the spectrometer, beside the FPD and the efficiency of the

detection system was determined via a Monte Carlo simulation program.

The first step of the data analysis included the energy and position calibration of MAGNEX,

as well as the energy calibration of the silicon detector used for the breakup measurement.

The next step of the analysis included the reconstruction of the data, as well as the particle

identification for both elastic scattering and breakup. Subsequently, the differential cross

sections for the elastic scattering were obtained in the laboratory system and were transformed

to the center of mass system by calculating the appropriate Jacobians. The present elastic

scattering data in inverse kinematics are found in good consistency with previous data obtained

in direct kinematics. As the present data extend to more forward angles than the previous

ones, where the scattering is Rutherford, they validate (or not) their normalization.

Regarding the breakup data, a Monte Carlo simulation program was adopted for deter-

mining the efficiency of the detection system. The program, following the discretization of

continuum as in the CDCC approach (Continuum Discretized Coupled Channel), describes

very well the experimental energy distributions of the breakup fragments. Taking into account

gated simulated spectra under the experimental conditions and ungated ones, the efficiency

of the detection system was determined. Subsequently by using the total efficiency of the de-

tection system and the beam flux, double differential breakup cross sections were determined

for all the measured α - d pairs. These cross sections were transformed to the center of mass

frame by using the appropriate Jacobians assuming the inelastic scattering 6Li + p → 6Li∗ + p

assigning for the excited 6Li nuclei an excitation energy Ex and an angle θc.m.. The excitation

energy Ex for each angle was determined as a weighted mean between the various excitation

energies corresponding to the continuum energy bins adopted in the CDCC calculations. Fur-

thermore, for each pair of laboratory angles (θα−lab, θd−lab), a center of mass angle θc.m. was

assigned applying the Ohlsen formulas. In this way, the breakup angular distributions in the

center of mass frame were calculated. Our breakup data are limited in the angular range

between θc.m.= 10o and θc.m.= 90o in the center of mass frame since the considered events are

associated to energies corresponding to the first solution of the kinematical equations. Events
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with energy corresponding to the second kinematical solution were cut out due to the tantalum

foils masking the fixed angle silicon detector or/and the selection of the detected energy range

by the spectrometer. It should be noted that, breakup experimental angular distributions in

the center of mass frame as well as total breakup cross sections were obtained for the first time

at the energies of 25 and 29 MeV.

Regarding the theoretical interpretation of the present data, the elastic scattering data

were considered in the microscopic approach of the Jeukenne-Lejeune-Mahaux (JLM) potential

(without any coupling), which fails to reproduce the data. It should be noted that this is the

first time that the JLM potential was tested both for a very light weakly bound projectile

as 6Li and at very low energies E = 2.6 - 4.8 MeV/u. Before, the JLM potential was found

adequate to describe elastic scattering data for a weakly bound radioactive but heavier mass

nucleus as 17F at similar energies and compatible with elastic scattering for the same light

weakly bound nucleus 6Li, but at much higher energies.

Further on, a global investigation of all reaction channels was considered in a Continuum

Discretized Coupled Channel (CDCC) framework. Into this context, extensive CDCC calcu-

lations were performed adopting the α + d cluster model of 6Li with the p - α and p - d

interactions obtained by fitting previous experimental data. The calculated angular distribu-

tions for both elastic scattering and breakup were compared with experimental data and found

to be in very good agreement. According to the CDCC calculations, the sequential breakup

via the first 3+ resonance accounts for ∼ 50-60 % of the total breakup for the highest two

energies, ∼ 38 % for 20 MeV and ∼ 0.04 % for the lowest energy, 16 MeV. It was also found

that coupling to the full continuum (direct and resonant) is strong and adequate in order

to describe the elastic scattering data in the most effective way. However, the most impor-

tant coupling at all energies is the coupling to resonant breakup while, the coupling to direct

breakup has in principle a small influence, which becomes larger at the higher energies. It

should be noted that, at the lower energies, coupling to 3+ resonance is very strong although,

the resonant breakup cross section seems to be very small. Such a striking situation was also

reported recently for the elastic scattering of 7Li + p. This interesting phenomenon may be

an example of a ”virtual” coupling to continuum. Last, total breakup cross sections were ob-

tained integrating the differential cross sections by assuming the shape of the CDCC angular

distributions for the angular region where experimental breakup data do not exist.

Total breakup cross sections as well as absorption cross sections given as output in our

CDCC calculation were compared the first with our experimental breakup data and the second

with data of the reaction 6Li + p→ 4He + 3He. This is the only available reaction channel with
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significant cross section and was measured simultaneously with breakup, allowing a meaningful

comparison in a theoretical framework. Indeed, the agreement between the experimental and

theoretical absorption cross section for all energies is excellent, giving further support to the

global interpretation of the 6Li + p data in a CDCC framework and vice versa.

The validity of the present elastic scattering data was also checked into the global CDCC

framework proposed by Guo and Matsumoto, using the JLM potential as entrance potential.

These calculations were found in fair agreement with the experimental data at lower energies

and larger angles and in good agreement with the data at the higher energies.

As a final comment, the technique described here is proved to be well-established both

experimentally and theoretically allowing the study of similar systems with stable weakly

bound or radioactive projectiles on proton/deuteron targets, with the MAGNEX spectrometer.
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Introduction

This work is part of the curriculum of the Postgraduate Program of the Department of

Physics, University of Ioannina. The research area belongs to the basic direction of Nuclear

Physics and in particular on the subject of Nuclear Reactions involving weakly bound nuclei.

With the advent of radioactive beam facilities, elastic scattering involving exotic nuclei has

been proved to be a powerful tool for probing the optical potential as well as for investigating

coupling channel mechanisms especially at near barrier energies [1–3]. Radioactive beams

in some cases are produced with significantly lower flux than the stable ones. Therefore, a

fruitful research was developed the last decade with stable weakly bound nuclei [4], in principle

at the same footing with the research based on radioactive nuclei. Such measurements can be

performed with a high beam intensity and may be considered as predecessor measurements to

the ones with radioactive nuclei. Amongst these, nucleon scattering involving weakly bound

stable or radioactive nuclei is the most favorable and simplest tool for probing the potential

and/or the structure of a nucleus. The measurements are performed in inverse kinematics

even for stable projectile, for the last case not only to ”mimic” the same conditions as with

radioactive ones but to draw other technical benefits that will be described below.

The last years, several nucleon scattering studies were performed in inverse kinematics with

radioactive projectiles, and the halo or skinlike nature of the projectile is probed as long as

the potential is known and vice versa. For example for energies well above Eproj.= 10 MeV/u,

the microscopic approach of the Jeukenne - Lejeune - Mahaux (JLM) potential [5] was the

basis for several such studies [6–16]. This model was successfully applied in Refs. [17–19] for

medium and heavy mass stable nuclei and for energies above 10 MeV/u with slight adjustments

only on the imaginary part. The applicability of the method for lower energies (7 ≤ E ≤ 24

MeV/u) was tested in Ref. [20] and for low to high mass numbers in Refs. [18, 21]. Recently,

the JLM potential was also validated for the system 17F + p at a rather low energy ∼ 4

MeV/u [22] providing good agreement with the data. Thus, it is very interesting to investigate

the applicability of the model for a very light stable weakly bound projectile as 6Li and at very
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low energies.

The 6Li nucleus exhibit a pronounced cluster structure with a low binding energy in the

α-d channel and a low density of its excited states up to an excitation energy of about 16

MeV. Under these conditions, the choice of a standard optical potential is inapplicable. Also,

it should be noted that, elastic scattering and reactions of nucleons and light nuclei with 6Li

are of great practical and theoretical importance, with serious consequences on astrophysical

problems [23–26] as well as applications in fusion reactors [27–29]. The determination of low-

energy cross sections, which belong to a deep sub-barrier region is a difficult task both from the

theoretical and experimental point of view and the possible approach relies on extrapolations.

The latter is based on the exact form of the potential barrier, the potential penetrability and the

extrapolation of S-factors to zero energy. Therefore, elastic scattering and reaction/breakup

measurements at low energies could be very useful for a detailed theoretical approach.

Several articles exist in the literature concerning measurements on elastic scattering of

protons from 6Li in direct kinematics and a detailed compilation can be found in [30]. Mea-

surements in a wide energy range (E = 1.6 to 12 MeV/u) and a rather wide angular range

θlab=30o to 165o are found in Refs. [31, 32] while polarization and phase shift measurements

in Refs. [33, 34] for E = 0.5 to 5.6 MeV/u. It should be mentioned that most of these mea-

surements are relative measurements, and the normalization is obtained via a thick target

study [35]. The theoretical analysis of these data is mainly focused on the 7Be structure and

not on the potential except Haller et al. [32], where an optical potential is used to fit the data

allowing the various parameters to strongly depend on energy. The polarization measurements

fail to give a clear picture due to several parameters which have to be determined. Between

these parameters we can notice the unknown total reaction cross section needed to fit the

absorption. Theoretical approaches to probe the potential, in a folding and Coupled Channels

(CC) context are found in Refs. [21, 36, 37], but they deal with data at rather high energies

above E= 25 MeV/u. Four recent interesting articles [38–41] present Continuum Discretized

Coupled Channel (CDCC) calculations and calculations with a microscopic M3Y potential

respectively, from rather low to higher energies (∼ 5 to 155 MeV/u).

A comprehensive study in the CDCC framework requires not only the measurement of

elastic scattering channel but also the measurement of the breakup and the other reaction

channels. It is well known that, weakly bound nuclei possess most of the times one bound

state, the ground state, and a broad featureless continuum. Due to their cluster structure with

small separation energies, they can be easily excited above their particle emission threshold.

Hence their breakup reactions induced by the Coulomb and nuclear fields of suitable targets
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could be useful tools to investigate their structure as well as coupling channel effects. Into this

context, the simplest breakup process can be obtained on a proton target in a complementary

mode with elastic scattering.

In our case, due to the pronounced cluster structure of the 6Li nucleus as well as to its very

low binding energy in the α-d channel (1.47 MeV), the breakup of this nucleus is expected to

be large. It has mainly been investigated in exclusive measurements at near barrier energies on

light [42,43], medium [44–51] and heavy targets [51–61]. Interest was also shown for the effect

of resonant and direct breakup on elastic scattering [62–68]. For breakup of 6Li on protons

only one comprehensive work was published in Ref. [69] many years ago, but at much higher

energies than the Coulomb barrier (∼ 12 x VC.b.). Moreover neither the total breakup cross

section nor the angular distributions in the center of mass system are given in Ref. [69].

Considering all the above, it was proposed the investigation of the system 6Li + p, including

both elastic scattering and breakup measurements, at four near barrier energies, namely 16, 20,

25 and 29 MeV (2.67 - 4.83 MeV/u). The experimental data were collected in Istituto Nazionale

di Fisica Nucleare - Laboratori Nazionali del Sud (INFN - LNS) [70], in Catania, Italy while,

the analysis of the data was completed at the NPL - Ioannina [71]. This work is part of a project

proposed by Prof. A. Pakou including several studies in inverse kinematics [16, 22, 72–79].

In particular, the elastic scattering of protons by 6Li is revisited in inverse kinematics and

by using the MAGNEX spectrometer [80–89]. By setting MAGNEX close to zero, and thanks

to its large acceptance, we can span almost a full angular range in the center of mass frame

all in one go, facilitating our normalization via Rutherford scattering at the most forward

angles. This can validate or not the normalization adopted in the previous data, and remove

possible systematic uncertainties. Furthermore, this experiment is considered as a predecessor

measurement to ones with other weakly bound stable or radioactive projectiles. The final goal

is the breakup measurement, which can be easier accessible in inverse kinematics, since all the

ejectiles are confined at forward angles and MAGNEX is a powerful tool, capable of detecting

them with very good angular and energy resolution. The breakup measurement was performed

in its own right and also as complementary measurement to elastic scattering and to the other

open reaction channel 6Li + p → 4He + 3He reported in [75,76] and performed simultaneously

at the same experiment. A global investigation of all reaction channels will be considered in a

Continuum, Discretized, Coupled Channel (CDCC) framework.

Taking into consideration all the above, the present work includes:

• A chapter with the theoretical background, necessary for the data interpretation (Chapter
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1).

• The details of the relevant experiment performed at the MAGNEX facility of the INFN

- LNS (Chapter 2).

• The data reduction (Chapter 3) and in particular the calibration procedure (3.1), the

particle identification (3.2) and the determination of the cross sections for both the elastic

scattering (3.3) and the breakup process (3.4).

• The theoretical interpretation (Chapter 4), including calculations using the microscopic

Jeukenne-Lejeune-Mahaux potential (4.1) as well as calculations in the Continuum Dis-

cretized Coupled Channel framework (4.2)

• The concluding remarks (Chapter 5).

This work also contains appendices with:

⋄ The determination of the effective beam energy, useful for the ray-reconstruction proce-

dure (Appendix A).

⋄ The error estimation of the cross section for both elastic scattering and breakup data

(Appendix B).

⋄ Computer programs converting the differential cross sections from the laboratory to the

center of mass frame and vice versa (Appendix C).

⋄ Tabulated values of the experimental data (Appendix D).
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Chapter 1

Theory

This chapter includes a brief introduction to the theoretical background, necessary for

the data interpretation. The main principles regarding the elastic scattering process will be

described in section 1.1 and include an introduction to scattering theory (subsection 1.1.1) as

well as to the optical model (subsection 1.1.2). A brief introduction to the breakup process will

be presented in section 1.2 and finally, the principles of the Continuum Discretized Coupled

Channel (CDCC) calculations will be described in section 1.3.

1.1 Elastic Scattering

Elastic scattering is the simplest and most favorable tool in the basic direction of Nuclear

Physics giving important information on the structure of the involved nuclei as well as on the

nature of forces between them. Moreover it is well known that several discoveries in Nuclear

Physics have been performed via scattering experiments.

The simplest form of a nuclear reaction is a reaction with two outgoing particles:

a+X → Y + b (1.1)

where a and X are the projectile and the target nucleus respectively while, b and Y are the

ejectile (the observed particle) and the residual nucleus respectively. Eq. (1.1) can be written

equivalently as follows:

X(a, b)Y (1.2)
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In the case of elastic scattering process, the incident and outgoing particles are the same

and are found in their ground states. The Q-value of the elastic scattering is equal to zero

while the energy, momentum modulus and particle number are conserved.

1.1.1 Scattering Theory

Scattering is characterized by the differential and the total cross section. The differential

cross section is given as:

dσ

dΩ
= |f(θ, ϕ)|2 (1.3)

where f(θ,ϕ) is the scattering amplitude. The total cross section is given by the following

formula [90]:

σ =

∫

dσ

dΩ
dΩ =

∫ 2π

0

dϕ

∫ π

0

dσ

dΩ
sinθdθ (1.4)

The simplest classical scattering process is the Coulomb scattering. The Schrödinger equa-

tion for a Coulomb potential at a radius r≥Rc is:

[

− h̄2

2µ
∇+

Z1Z2q
2

4πǫ0r

]

Ψ(r) = EΨ(r) (1.5)

where Z1, Z2 are the atomic number of the projectile and the target respectively, q is the charge

of the proton and E is the center of mass energy. The wavefunction Ψ(r) at the limit r→∞ is:

Ψ(r, θ, ϕ) = eikz +
f(θ, ϕ)eik

′r

r
(1.6)

where k, k′ are the incident and scattering wavenumbers, Taking into account all the above

and by following the prescription described in Ref. [91] it is possible to lead to the Rutherford

scattering cross section in the center of mass frame [90, 91]:

dσ

dΩ
= |f(θ, ϕ)|2 =

[

1

4πǫ0

Z1Z2q
2

4E

]2
1

sin4(θ/2)
(1.7)

More complicated situation may occur if the interacting potential is not the Coulomb but

the nuclear one. Assuming an interaction potential V = V(r) in a partial wave description,

one can write the wavefunction as:
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Ψ(r, θ) =

∞
∑

l=0

αlRl(r)Yl0(θ) (1.8)

where the coefficient αl is the amplitude of the lth partial wave. In Eq. (1.8), the wavefunction

was written into a product of radial and angular terms. Considering systems independent of

the azimuthal angle ϕ only the spherical harmonics with m=0 are involved. So, Ylm(θ,ϕ) →
Yl0(θ) [91].

The spherical harmonic Yl0(θ) is an eigenfunction of the angular part of the Schrödinger

equation with eigenvalue l(l + 1). Apart from that, we can define the function:

ul(r) ≡ rRl(r) (1.9)

Then the radial wave function for partial wave l satisfies the following equation [91]:

d2ul(r)

dr2
−
[

l(l + 1)

r2
+

2µ

h̄2 V (r)− k2

]

ul(r) = 0 (1.10)

For r → ∞ and by considering short-range potentials, the two first terms of eq. (1.10) are

approximately zero. So, in the asymptotic region r → ∞, the eq. (1.10) may be written as:

d2ul(r)

dr2
+ k2ul(r) = 0 (1.11)

The solutions of the second-order differential equation (1.11) are:

ul(r) → Alsin(kr −
lπ

2
) +Blcos(kr −

lπ

2
) (1.12)

or equivalently:

ul(r) → Clsin(kr −
lπ

2
+ δl) (1.13)

where δl is the phase shift. Also, Al and Bl or C l can be determined from the boundary

conditions [91].

Then, the wavefunction Ψ(r,θ) can be written as:

Ψ(r, θ) →
∞
∑

l=0

Dl
Yl0(θ)

r
sin(kr − lπ

2
+ δl) (1.14)
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where Dl can be determined from the boundary conditions. Considering again a scattered

wave with a wavefunction similar to the one of eq. (1.6) and by using the spherical Bessel

functions, the scattering amplitude may be written as follows [91]:

f(θ) =

√
4π

k

∞
∑

l=0

√
2l + 1eiδlsinδlYl0(θ) (1.15)

while the differential elastic scattering cross section can be written as:

dσ

dΩ
=

4π

k2

∣

∣

∣

∣

∣

∞
∑

l=0

√
2l + 1eiδlsinδlYl0(θ)

∣

∣

∣

∣

∣

2

(1.16)

A detailed description of the procedure can be also found in Refs. [90–94].

1.1.2 Optical Potential

In principle, when a nucleon is incident on a nucleus may be elastically scattered or it may

create a variety of reactions [95]. In the optical model framework the interaction between two

nuclei is represented by a complex potential. The real part is referred to the elastic scattering

(analogous to the refraction in optics) while, the imaginary part accounts for the loss of flux

going to any other open, non-elastic channels (analogous to the absorption in optics). At low

energies the attenuation of the incident wave is predominant near the nuclear surface, due to

the fact that the imaginary part of the potential may be large near the surface. As the incident

energy increases, this phenomenon may become less important while, the absorption of the

incident wave may take place throughout the whole nuclear volume [96, 97]. In general, the

optical potential is given by the following formula [90, 98]:

V = V0 + iW0 (1.17)

where V0 and W0 are the real and the imaginary part of the potential, respectively.

In this framework, both macroscopic and microscopic potentials can be used.

Macroscopic Potentials

In the macroscopic approach of the optical potential, the interaction between two nuclei

is simplified by taking into account the nucleus a whole system. Several potentials have
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Figure 1.1: A comparison between the Woods - Saxon potential, the harmonic oscillator and

the square well.

been proposed in order to describe the nucleus - nucleus interactions in a phenomenological

framework. The most common one is the Woods - Saxon potential [95]. This follows closely

the density distribution of the nucleons:

ρ(r) =
ρ0

1 + e(r−R)/α
(1.18)

and it is given by the following formula:

V (r) =
V0

1 + e(r−R)/α
(1.19)

where V0 (MeV) represents the potential depth, R = r0A
1/3 (fm) the nuclear radius and α

(fm) the diffuseness.

The Woods - Saxon potential is an attractive potential (increase with distance) and it is

approximately flat in the center, for large mass numbers A. A comparison between the Woods -

Saxon potential, the harmonic oscillator and the square well is presented in Figure 1.1. Usually,

in optical model framework, this potential is used to describe both a real and an imaginary

part, according to the following formula:

U(r) =
V0

1 + e(r−Rv)/αv
+ i

W0

1 + e(r−Rw)/αw
(1.20)

Eq. (1.20) is the simplest form of an optical potential based on Woods-Saxon volume

terms for both the real and the imaginary part. In fact, a complete optical potential may be

consisted of several terms. For example, an imaginary surface term is usually used instead

of the imaginary volume term or complementary to that. This surface term is usually taken
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to be the radial derivative of Woods - Saxon form factor [95, 99]. Also, especially at nucleon

scattering, an additional spin - orbit (s.o.) term of so-called Thomas type is often substantial

in order to reproduce the experimental data [90–92, 94, 95, 99, 100]. The radial dependence

of such a spin - orbit term is similar to the surface one [99]. Finally, for charged particles

scattering, a Coulomb term should be included in the complete optical potential according to

the formula [91, 92, 100]:

Vc(r) =

{

[

1
4πǫ0

]

Z1Z2q2

2Rc

(

3− r2

R2
c

)

for r ≤ Rc
[

1
4πǫ0

]

Z1Z2q2

r
for r ≥ Rc

(1.21)

where Rc is the Coulomb radius, q the charge of the proton and Z1, Z2 are the atomic number

of the projectile and the target respectively. Thus, the complete phenomenological optical

potential follow the formula:

Uopt(r) = Vc(r) + Uvolume(r) + Usurface(r) + Us.o.(r) (1.22)

The disadvantage of the macroscopic method is that many different sets of parameters

can be found to give good fits to the experimental data. This raises the question which

physical content is correct. However, several methods have been developed to anticipate this

problem [97, 101–106].

Microscopic Potentials

In the microscopic approach in principle the potential is obtained by assuming a nucleon-

nucleon effective interaction. The method includes two different categories [107]. In the first

category ground state and transition densities are folded with an effective nucleon - nucleon

interaction in order to generate the ground state and transition potentials. In the second

category the calculation starts from an infinite nuclear matter optical potential and the elastic

scattering and the transition optical potential of finite nuclei are deduced by using the relevant

ground state and transition densities [107]. Several microscopic approaches of both categories

have been proposed [5, 14, 108, 109].

Regarding the first category of microscopic calculations, the potential is obtained by using

an effective nucleon - nucleon interaction folded over matter densities of the interacting nuclei

[14]. Such a so called double folding potential may be written as:
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Figure 1.2: The coordinates for the double folding integral of Eq. (1.23).

U(rP ) =

∫∫

ρT (r1)ρP (r2)u(r12)dr1dr2 (1.23)

where ρP and ρT are the density distributions of the projectile and the target respectively

while, u(r12) is the effective interaction and it has the form:

u(r12) = u00 + u01τ1 · τ2 + u10σ1 · σ2 + u11τ1 · τ2σ1 · σ2 (1.24)

with σ and τ the Pauli and Isospin matrices, respectively [14,94,108]. The coordinates used in

double folding calculations are presented in Figure 1.2. It should be noted that, if only one of

the integrations in Eq. (1.23) is done, the result is a single folding nucleon - nucleon potential.

Such a simpler approach is more useful in nucleon scattering.

In the present work the microscopic potential derived by Jeukenne, Lejeune and Mahaux

(JLM) was used [5]. This potential was the basis for several nucleon - nucleus studies (e.g.

[6–13, 15, 107]) and belongs to the second category of the microscopic calculations described

above [107]. It should be noted that, both the real and the imaginary part of a nucleon - nucleus

optical potential may be obtained in the framework of the JLM model. The starting point

for a calculation based on the JLM potential is the Brueckner - Hartree - Fock approximation

and the Reid’s hard core nucleon - nucleon interaction which provide the energy and density

dependence of the isoscalar, isovector and Coulomb components of the complex optical model

potential in infinite nuclear matter [5,14,107]. Then, applying the local density approximation

(LDA), the spherical optical potential of a finite nucleus can be obtained. Starting from the

infinite nuclear matter density and by using this approximation, one can extract the density

distribution of a finite nucleus. In the LDA framework, the real and the imaginary part of

the optical potential are determined as a function of energy E and density distribution of the

(finite) nucleus ρ(r). A number of coefficients necessary for the calculations are tabulated in

Ref. [5] while a normalization factor λW ∼ 0.8 of the imaginary part may be applied. It should
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be noted that in the JLM model, numerical results for the real and imaginary part of the

potential were parameterized in order to obtain analytical forms, taking into account data of

medium and heavy mass stable nuclei at the energy interval 10≤E≤160 MeV/u. The model

was successfully applied to stable nuclei inside that energy region in Refs. [17–19]. However,

the application of this approach outside the mass and energy interval, where the model was

validated, constitutes a severe test to it. A comprehensive discussion of these points can be

found in Ref. [14]. The applicability of the JLM method at lower energies (7 MeV/u ≤E≤ 24

MeV/u) was tested in Ref. [20] and for low to high mass numbers in Refs. [18, 21]. Also, the

applicability of the JLM potential was checked for medium and heavy mass targets but, at

high energies (E∼ 200 MeV/u) in Ref. [110]. Recently, the JLM potential was also validated

for the weakly bound radioactive projectile 17F scattered from protons at a rather low energy

∼ 4 MeV/u [22], providing good agreement with the data.

1.2 Breakup process

The investigation of the reaction mechanisms involved in collisions of weakly bound nuclei

considers various processes. Amongst them the breakup is of great importance. In a pure

breakup reaction, the projectile nucleus, which is usually a weakly bound one and thus is

characterized by low binding energy, breaks into two or more fragments due to the nuclear

and Coulomb interactions with the target [1,111]. Breakup reactions may be distinguished in

sequential and direct processes [111].

In sequential breakup the ejectile is produced in a particle unstable state which will

subsequently decay. In this case the properties of the breakup fragments are determined by

the populated state of the ejectile. Information on the reaction mechanism may be lost, to a

large extent, due to the relatively long life-time of those states [111]. In general, a sequential

breakup reaction with three particles in the final state can be written as:

a +X → a∗ +X → c+ d+X (1.25)

where a and X are the projectile and the target nucleus respectively while, a∗ is the unbound

ejectile in an excited state, which decays into particles c and d.

On the other hand, in direct breakup process, the particles in the final state are produced

simultaneously, without forming the intermediate particle unbound state [111]. In case of direct

breakup with three particles in the final state, the reaction can be written as:
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a+X → c+ d+X (1.26)

where a and X are the projectile and the target nucleus respectively while, c and d are the

breakup fragments. The fragments c and d are related to the projectile a and hence exhibit

its properties [111]. The ground state - ground state Q-value can be written as a function of

the involved masses as:

Qgg = ma − (mc +md) = −Eb (1.27)

where Eb is the binding energy.

Breakup processes may be also classified as follows (without including processes of com-

pound nucleus modes):

• Elastic breakup: All the particles in the final state are emitted in their ground state

and thus, the reaction can be written as: a + X → cg.s + dg.s + Xg.s.

• Inelastic breakup: The breakup is accompanied by the excitation of some of the

reaction products. This process may include target excitations (a + X → c + d + X∗)

or core excitations (a + X → c∗ + d + X) [112].

• Breakup after transfer: Breakup process follows a transfer reaction. In this case Eq.

(1.25) may be written as: a + X → b + Y → c + d + Y .

In the present work, we deal mainly with elastic projectile breakup in the sequential as well

as the direct mode:

sequential :6 Li+1 H →6 Li∗ +1 H →4 He+2 H +1 H

direct :6 Li+1 H →4 He+2 H +1 H
(1.28)

A schematic representation of sequential breakup via the 3+ resonance state (Ex= 2.186 MeV)

and direct breakup to the non - resonant continuum for the 6Li + p system is illustrated in

Figure 1.3.

It should be noted that the contribution of the reaction 6Li + 1H → 5Li + 2H → 4He + 1H

+ 2H (breakup after transfer) in our spectra, was evaluated via our simulation analysis and it

was found not to affect our data.
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Figure 1.3: Schematic representation of sequential and direct breakup for the 6Li + p system.

1.3 Continuum Discretized Coupled Channel (CDCC)

calculations

The Continuum Discretized Coupled Channel (CDCC) method is used in order to describe

elastic scattering and breakup processes taking into account couplings to the resonant and non-

resonant continuum states of the weakly bound nucleus. The CDCC method was originally

developed inside the framework proposed by Johnson, Soper and Rawitscher in Refs. [113,114]

in order to describe the effect of breakup in deuteron scattering by Nickel and Calcium targets.

The last decades the method was refined and became increasingly popular. This method is

based on the discretization of the continuum space above the breakup threshold and the goal

of such calculation is the determination of the cross sections for the elastic scattering and the

breakup channels [115]. Except the angular distributions of elastic and breakup channels, the

output of a CDCC calculation includes also absorption as well as total reaction cross sections.

These information allow for a global investigation of all reaction channels in a comprehensive

way. One of the most widespread tools that is used to perform such calculations is the FRESCO

code [116].
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In the CDCC approach, the weakly bound nucleus is assumed to have an internal cluster

structure of a core and a valence nucleus. The weakly bound nucleus is usually the projectile

one. Thus, in a relevant calculation the (core + target) and (valence + target) potentials are

involved. It should be noted that these potentials are of great importance with a significant

effect in the results of the calculation. In particular, the central potential in the entrance

channel as well as the coupling potential were derived from the (core + target) and (valence

+ target) potentials by means of a single folding method [38, 64]:

USF
i→f(R) =

〈

Ψf(r) | Uv−t

(

| ~R +
2

3
~r |
)

+ Uc−t

(

| ~R− 1

3
~r |
)

| Ψi(r)
〉

(1.29)

where ~R connects the centers of mass of the projectile (core + valence system) and the target,

~r is the vector which connects the center of mass of core and valence while, U c−t and Uv−t are

the (core + target) and (valence + target) potentials, respectively. In our case, these potentials

were obtained from an optical model analysis of elastic scattering data of the (α + p) and (d

+ p) systems.

Regarding the discretization procedure, it should be noted that, the three-body wave func-

tion of the system is expanded in terms of the eigenstates of projectile Hamiltonian, including

the existing bound and unbound states. To make the expansion finite, the continuum above the

breakup threshold is approximated by a discrete representation in terms of square-integrable

functions (continuum discretization) [115]. In our case, the non-resonant continuum above the
6Li→4He + 2H breakup threshold was discretized into a finite number of momentum bins of

equal widths ∆k while, the only resonance involved in our calculation (3+, Ex= 2.186 MeV)

was treated as a momentum bin, corresponding to a width of 100 keV. It should be noted that,

the momentum k of the 4He + 2H relative motion is given as [63, 64]:

k =

√

2µ

h̄2Ex (1.30)

where Ex is the 6Li excitation energy above the 4He + 2H breakup threshold while µ is the

reduced mass. The wave functions for the bins are calculated as [38]:

Ψ(r) =
1√
∆k

∫

∆k

φ(r, k)dk (1.31)

For the calculation of φ(r, k) the (core + valence) potential is necessary. In our case, the

potential binding the deuteron to the α particle core was assumed to have a Woods - Saxon

shape as described in Ref. [64].
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Besides the discretization and truncation of the momentum space, the continuum is also

truncated in L, the relative orbital angular momentum between the valence and the core

nucleus. The maximum value of L is usually adjusted empirically by checking the convergence

of the calculation. For the 6Li + p study, the relative orbital angular momentum between

the alpha particle and the deuteron was limited to the values L = 0, 1, 2. The discretization

procedure is depicted in Figure 1.4.

The general principles of the CDCC method are described in details in Refs. [115]. Rep-

resentative works involving the weakly bound nucleus 6Li with a detailed description of the

CDCC calculation procedure are reported in Refs. [38, 63, 64]. Finally, the overall procedure

and the results of the CDCC calculations, performed in the present study, are presented in

Chapter 4 as well as in Refs. [73, 74].

Figure 1.4: Discretization of the continuum phase space as it was considered in the CDCC

calculations for the 6Li + p system at 29 MeV (4.83 MeV/u). The values of the mean excitation

energy of each bin with respect to the breakup threshold are indicated with the blue color while,

the bin which is designated with the orange box correspond to the 3+ resonance.
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Chapter 2

Experimental Details

The goal of the present work is the study of the 6Li+p system in inverse kinematics at

near barrier energies (3≤E/VC.b≤6). The relevant experiment includes three different parts:

the elastic scattering measurement, the breakup measurement, obtained with the MAGNEX

spectrometer [80–89], and the measurement of the reaction p(6Li,3He)4He. The last, performed

with a module of the GLORIA/DINEX array [117], was the subject of the M.Sc. thesis of Ch.

Betsou [75, 76] and will be considered only in the discussion of the results. The experimental

setup for the elastic scattering and the breakup measurements, the topics studied in this thesis,

are described in section 2.1. Information regarding the MAGNEX spectrometer are presented

in section 2.2. Details about the silicon detector used in coincidence with MAGNEX for the

breakup measurement as well as some information about the electronics are presented in section

2.3 and 2.4, respectively. Finally, some information regarding the targets used in the present

experiment are presented in section 2.5.

2.1 Experimental setup and procedure

The experimental setup was visualized at the MAGNEX facility [80–89] at the Istituto

Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) in Catania, Italy [70].

A view of the experimental hall where the experiment took place is presented in Figure 2.1.

Beams of 6Li3+ were accelerated by the Tandem accelerator at the energies of 16, 20, 25 and 29

MeV and impinged on CH2 targets of appropriate thicknesses. Measurements were repeated

with 12C targets of similar thicknesses, for estimating the background in the data due to the
12C presence in the CH2 targets. The acceptance of the spectrometer is defined by four slits,
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Figure 2.1: A view of the experimental hall where the experiment took place.

two for the horizontal and two for the vertical position located at the entrance of MAGNEX

(no. 5 in figure 2.3). A schematic representation of the experimental setup is illustrated in

Figure 2.2 while, views of the reaction chamber are presented in Figure 2.3.

Regarding the elastic scattering measurement, the elastically scattered lithium ions were

momentum analyzed by the MAGNEX spectrometer [80–82, 86–89], whose optical axis was

set at θopt=4o and were detected by its Focal Plane Detection system (FPD) [84, 85]. During

the elastic scattering measurement, MAGNEX worked in an almost full horizontal angular

acceptance (2o - 10o) but with a reduced vertical acceptance for protecting the focal plane

detector from the elastic high counting rate. Finally, the beam charge was collected by a

Faraday cup, set at the entrance of MAGNEX (no. 3 in figure 2.3), and its absolute value

was cross-checked via the measurement at the very forward angles were the elastic scattering

is Rutherford.

The breakup measurement was an exclusive measurement obtained by the detection of

both breakup fragments in coincidence. The alpha fragments were momentum analyzed by

the MAGNEX spectrometer [80–82, 86–89], whose optical axis was also set at θopt=4o, and

were detected by its FPD [84,85]. In this measurement, MAGNEX worked in a full horizontal
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Figure 2.2: Schematic setup of the experiment.

Figure 2.3: Views of the reaction chamber.
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angular acceptance (-1o - 10o), and a rather well open vertical acceptance as the counting

rate due to breakup was rather low. The elastic scattered 6Li ions were swept out by the

appropriate magnetic fields, allowing the detection of alphas in energy slices of 11.0 to 15.5

MeV, 8.4 to 13.3 MeV and 6.8 to 10.7 MeV for the 29, 25 and 20 MeV run, respectively. The

second breakup fragment, deuterons, were detected by a silicon detector, set at θlab = 5o. This

detector was masked, against Rutherford scattering deterioration, with 43.6, 30.8 and 25.9 µm

tantalum foils respectively for the 29, 25 and 20 MeV measurements. These foils absorbed all

lithiums but allowed protons and deuterons to go through. Exclusive yields were determined

for pair of angles every 0.5o for alphas detected by MAGNEX in the angular range 0o to 10o,

combined with deuterons detected by the fixed angle detector at 5o. The beam current was

measured by a Faraday cup, located inside the spectrometer, beside the FPD.

2.2 The MAGNEX Spectrometer

The study of the motion of charged particles through a magnetic field is a standard tech-

nique in order to explore the structure of the matter. One of the most important applications

of this technique is the development of the magnetic spectrometers for nuclear reaction studies.

The first magnetic spectrometer used for nuclear reaction measurements was designed by R.

J. Van de Graaf and his team [118, 119] at MIT, and it follows closely the dimensions of the

one designed by Cockcroft [120] and used by Rutherford for alpha-decay studies [119, 121].

The reactions under investigation by R. J. Van de Graaff and his team were 6Li(d,p)7Li and
9Be(d,α)7Li [119]. Other representative instruments at the early ages of the spectrometers were

developed at CalTech [122, 123], MIT [124], Oak Ridge [123, 125], Pittsburgh [123, 126] and

Berkeley [123,127]. The last one was among the first instruments especially designed for heavy

ions experiments. The last decades several high - performance devices were developed like

VAMOS [128] at GANIL (France), SHARAQ [129] and SAMURAI [130] at RIKEN (Japan),

PRISMA [131] at INFN-LNL (Italy) and MAGNEX [80–82] at INFN-LNS (Italy).

MAGNEX is a high - performance magnetic spectrometer installed at the Istituto Nazionale

di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) and operated by the MAGNEX

group - head Prof. F. Cappuzzello. It is a large acceptance (50 msr) and momentum (-

14%, +10.3%) detection system, composed of a quadrupole and a dipole magnet as well as a

Focal Plane Detector (FPD). The last decade several experiments have been performed at the

MAGNEX facility in a wide energy range with beams delivered by the Tandem as well as the

Cyclotron accelerator of the laboratory, by the MAGNEX group as well as by external users.
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Figure 2.4: A view of the experimental hall with the dipole (center) and the Focal Plane

Detector (right).

The facility is shown in Figures 2.1 and 2.2. The quadrupole [132], manufactured by Danfysik

A/S, focuses the particles in the vertical (non-despersive) direction. The 55o dipole [133] (also

manufactured by Danfysik A/S) provides the suitable dispersion and the focusing strength in

the horizontal (dispersive) direction. The accepted magnetic rigidities vary from ∼ 0.2 Tm to

∼ 1.8 Tm, corresponding to an energy regime of the detected ions between E ∼ 0.2 MeV/u

to E ∼ 40 MeV/u depending on their charge and mass [80]. Finally, the Focal Plane Detector

(FPD) is the detection system as well as the most important part of the spectrometer. The

MAGNEX FPD together with the dipole are presented in Figure 2.4, while the main features

of the MAGNEX spectrometer are given in Table 2.1.

This work is a part of a project proposed by Prof. A. Pakou including several experiments

in inverse kinematics [73, 74, 77–79]. The inverse kinematics measurements in spectrometers,

require excellent energy and angular resolution as well as the possibility for a zero-degree

measurement. MAGNEX is a powerful tool combining all these features. It should be noted

that, the zero-degree measurement technique was also used in other experimental campaigns

such as NUMEN (spokespersons: F. Cappuzzello, C. Agodi) [134–136] in relation to double

charge-exchange reactions.
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Table 2.1: Main characteristics of the MAGNEX spectrometer [80].

Parameters of the quadrupole and dipole

Maximum field strength of the quadrupole 5 Tm−1

Radius of the quadrupole aperture 20 cm

Effective length of the quadrupole 20 cm

Maximum field of the dipole 1.15 T

Bending angle of the dipole 55o

Bending radius of the dipole ρ 1.60 m

Minimum bending radius of the dipole ρmin 0.95 m

Maximum bending radius of the dipole ρmax 2.35 m

Main characteristics of the MAGNEX spectrometer

Maximum magnetic rigidity 1.80 Tm

Horizontal angular acceptance -5.2o, +6.3o

Vertical angular acceptance -7.2o, +7.2o

Maximum solid angle 50 msr

Momentum acceptance -14.0%,+10.3%

Momentum dispersion 3.68 cm/%

Central path length 5.96 m

Focal Plane rotation angle 59.2o

Focal Plane height 20 cm

Focal Plane length 92 cm

Position resolution of the FPD (FWHM) 0.6 mm

Angular resolution of the FPD (FWHM) 0.3o

Mass resolution 0.6%

Energy loss resolution of the Focal Plane 6.3%

The magnetic field values of the MAGNEX dipole and quadrupole used in our experiment

were calculated using the COSYSetup program [137]. In particular, putting as an input the

reaction parameters: mass and energies, and the relative momentum δ, the program searches

for the appropriate settings of the magnetic fields among a set of tabulated values, calculated for

several configurations [89]. The quadrupole and dipole field intensities were measured by probes

inserted in the central region of the facility. In case of the elastic scattering measurements three

different magnetic settings (EL1, EL2, EL3) were applied at each energy in order to measure
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the complete energy (angular) range of the elastically scattered lithium ions. Overlapping

regions among sets EL1-EL3 ensured the consistency between different sets. The magnetic

settings for elastic scattering as well as the breakup runs are presented in Table 2.2.

Table 2.2: Magnetic settings for each run of the experiment. In the fourth and fifth column

appear magnetic fields BQ and BD for the quadrupole and dipole magnets, respectively. Last,

in the sixth column we give the magnetic rigidity Bρ.

Measurement E (MeV) Set BQ(T) BD(T) Bρ(Tm)

Elastic Scatt. 29 EL1 0.35205 0.378030 0.604848

Elastic Scatt. 29 EL2 0.31204 0.335420 0.536672

Elastic Scatt. 29 EL3 0.28307 0.301480 0.482368

Elastic Scatt. 25 EL1 0.31676 0.340510 0.544816

Elastic Scatt. 25 EL2 0.29148 0.311140 0.497824

Elastic Scatt. 25 EL3 0.26282 0.277660 0.444256

Elastic Scatt. 20 EL1 0.29346 0.313560 0.501696

Elastic Scatt. 20 EL2 0.26255 0.277090 0.443344

Elastic Scatt. 20 EL3 0.24026 0.251260 0.402016

Elastic Scatt. 16 EL1 0.26576 0.280780 0.449248

Elastic Scatt. 16 EL2 0.23624 0.246730 0.394768

Elastic Scatt. 16 EL3 0.21440 0.221940 0.355104

Breakup 29 BU 0.29875 0.322060 0.515296

Breakup 25 BU 0.28138 0.297345 0.475752

Breakup 20 BU 0.25465 0.267932 0.428691

2.2.1 The Focal Plane Detector

As it was already mentioned, the Focal Plane Detector (FPD) [80,84,85] is a key element

of the spectrometer. The FPD of MAGNEX was developed in collaboration with GANIL [138]

and consists of a proportional drift chamber and a wall of 60 stopping silicon detectors. The

drift chamber includes five sections, with five proportional counters, four of which are position

sensitive. The FPD drift chamber is confined by a stainless steel vessel without intermediate

foils but, with a thin entrance Mylar window. Thus, the detection threshold for heavy ions is

limited to about 0.5 MeV/u. The Mylar window is 92 cm wide and 22 cm high with a typical

thickness of some microns (1.5 µm for the present experiment). Twenty metallic wires each
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one with a diameter of 0.5 mm support the entrance window. The space between two metallic

wires is 10 mm. It should be noted that the entrance surface of the FPD is installed at an

angle of 59.2o in respect to the central trajectory. This offers a reduction to the chromatic

aberrations [80, 86].

Regarding the drift chamber of the FPD, the gas active volume is (136 x 20 x 9.6)cm3

with a cathode plate below and a Frisch grid above. The last one consists of ten gold-plated

tungsten wires, 50 µm thick, spaced 5 mm between centers. According to calculations, the

shielding efficiency of the grid, with respect to anode wires installed 2 cm above, is ∼89%.

The uniformity of the electric field between the Frisch grid, connected to the ground, and the

cathode, is guaranteed by a partition grid consisted of several rectangular rings parallel to the

cathode. The efficiency of the detector due to the presence of these rings is about 98.6%. The

gas normally used is isobutane while the gas pressure at the present experiment was ∼14.8

mbar. The pure isobutane gas (99.95% purity) ensures the stability of the gain, the good

localization of the avalanche, and the fast drift velocity [80].

The FPD proportional drift chamber is a single unit, divided in five sections without

intermediate foils. The five sections are: four Drift Chambers (DC1, DC2, DC3, DC4) and

one proportional counter (PC). Each of the DC counters is made of a unique amplifying wire,

while for the PC eight wires are connected in common. Both DCs and PCs are gold-plated

tungsten wires located 2 cm above the Frisch grid. The DC wires have diameters of 20 µm

while the PC ones 100 µm. The high-voltage applied to the wires (∼800 V in our case) is

provided by a unique power supply. For each of the DC counters, a set of 224 independent

induction pads is located 0.5 cm above. The entire strip patterned electrode is printed on a

circuit board. Each strip is 0.8 cm long and 0.59 cm wide and separated by 100 µm from

its neighbor. The use of these position-sensitive DC counters is a very good solution to the

determination of the coordinates inside the Focal Plane Detector and thus useful for the ray-

reconstruction. A schematic representation of the focal plane detector with the DC and PC

wires is presented in Figure 2.5 while a view of these wires as well as a part of the induction

pads are presented in Figure 2.6.

The last part of the Focal Plane Detector is the wall of 60 silicon pads. These silicon

detectors are arranged in 3 rows and 20 columns (Figure 2.6). The silicon columns are mounted

orthogonally to the MAGNEX optical axis. The edges of the detectors are vertically overlapped

by 1 mm in order to minimize the dead spaces between them. Each detector has a thickness

of 500 µm. The height of each detector is 7 cm while the width is 5 cm, creating an active

area of 35 cm2. The total active area of the wall is about 0.2 m2. It should be noted that
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Figure 2.5: A schematic representation of the focal plane detector: a) side view, b) top view.

Figure from ref. [84]
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Figure 2.6: Left panel: A view of the DC and PC wires as well as a part of the induction pads

(figure from ref. [81]). Right panel: A part of the silicon detectors wall (photo from ref. [81]).

the silicon wall is 1.5 cm away from the last DC (DC4). This distance was selected after the

appropriate electrostatic calculations in order to minimize problems of the uniformity of the

drift field [80, 88].

The various ejectiles passing through the MAGNEX quadrupole and dipole, are directed

into the Focal Plane gas chamber, forming ionized atoms and electrons along their track.

Under the influence of a uniform electric field, the electrons drift towards the Frisch grid with

constant velocities. In the present experimental conditions, these velocities are about 5 cm/µs.

Beyond the Frisch grid the electrons are accelerated in the presence of an electric field. This

field becomes much stronger approaching the DC or PC wires leading to secondary ionizations.

Thus, the number of electrons is increased by a factor of about 150 in thepresent conditions.

The avalanche produces a signal proportional to the energy loss by the ions in each section

of the FPD, providing the measurements of ∆EDC1, ∆EDC2, ∆EPC , ∆EDC3 and ∆EDC4 for

each event. These signals are shaped and amplified by the appropriate charge-sensitive pre-

amplifiers. The logic outputs, extracted only for the DC wires, are used for the measurement

of the horizontal position as follows. The electron avalanche around each DC wire induces

a charge on the nearest induction pad. The signals collected by these pads are shaped and

pre-amplified by an analog multiplexed read-out system based on 16-channels GASSIPLEX

chips which is mounted on the upper part of the FPD. The multiplexed signals from each
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DC are readout and digitally converted by the appropriate modules. The center of gravity

of the charge distribution at each DC section is then extracted. By exploiting the available

information of the position sensitive DCs, the measured centroid is converted to the horizontal

position XDC1, XDC2, XDC3, XDC4 in meter units [85]. These four independent measurements

allow the determination of the horizontal position (χf ) and the horizontal angle (θf) of the ion

track at the spectrometer focal plane (Figure 2.5(b)).

The vertical position and angle are measured by a drift time method. In particular, when

the charged particles reach the silicon wall a START timing signal is created (we assume that

the drift time of the ion inside the FPD is negligible). On the other hand, the electrons detected

at DCs give the STOP signal. Since the velocity of the electrons inside the gas is constant,

the time interval between the START and STOP signals is used for determining the vertical

positions YDC1, YDC2, YDC3, YDC4 initially in arbitrary units and finally via a calibration

to meters. For this purpose four standard TAC + ADC read-out electronics chains are used

(see Figure 2.7). Thus, the vertical position (yf ) and vertical angle (ϕf) of the ion track at

the focal plane are determined (Figure 2.5(a)). In this respect, taking into consideration the

horizontal and vertical position, measured using the technique mentioned above, the ion track

for each event is completely mapped. The operating principle of the MAGNEX FPD is also

presented in Figure 2.5.

Finally, the residual energy (Er) of the ions after crossing the gas is measured by the 60

silicon detectors. After the charge pre-amplifiers, the signals are sent to 16-channel shaping

amplifiers, which provide the useful spectroscopic and timing outputs (see Figure 2.7). The

information of both the energy loss (∆E) inside the gas and the residual energy (Er) allow the

particle identification via the standard ∆E-E (or similar) technique. The performance of the

FPD was studied in details in refs. [80, 82, 84].

2.2.2 Trajectory Reconstruction

A very important step for an accurate analysis of the data acquired at the MAGNEX

facility is the trajectory reconstruction technique. In particular, it is necessary to find a

relation between the initial coordinates of the particles and those measured at the focal plane

(final coordinates). By calculating the transport matrices and thus the inverted transport

matrices, one can reconstruct the initial particle coordinates from the measurement of the

final ones by the FPD. In this context, the MAGNEX group has developed the appropriate

ray reconstruction algorithms in order to accomplish this goal with sufficient precision even
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Figure 2.7: Schematic diagram of the read-out electronic chain of the residual energy (Er),

the energy loss (∆E) as well as the Y position measurements [89,139].
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for a large acceptance spectrometer like MAGNEX. The main features of these algorithms are

given below.

Following the prescription described in Ref. [80, 140], the motion of an ion beam under

the action of a magnetic force can be represented as a general phase space mapping, which

connects the final position Pf to the initial one P i as follows:

F : Pi(χi, θi, yi, ϕi, li, δi) → Pf (χf , θf , yf , ϕf , lf , δf ) (2.1)

In this equation, l is the trajectory length, χ and y are the horizontal and vertical coordinates

while, θ and ϕ are the horizontal and vertical angles respectively. The parameter δ=(p-p0)/p0,

is referred to the fractional momentum, where p and p0 are the actual and reference momentum

respectively. The mapping F, is represented as a matrix and it depends on the general spatial

distribution of the magnetic fields. The Eq. (2.1) could be written in a less compact form as

follows:

χf = F1(χi, θi, yi, ϕi, li, δi)

θf = F2(χi, θi, yi, ϕi, li, δi)

yf = F3(χi, θi, yi, ϕi, li, δi)

ϕf = F4(χi, θi, yi, ϕi, li, δi)

lf = F5(χi, θi, yi, ϕi, li, δi)

δf = δi

(2.2)

It should be noted that, due to the conservation of the momentum modulus for static magnetic

fields in the absence of energy degrading materials, the δ parameter is invariant. Also, the

l i parameter is consider as constant for thin targets. In addition, inverting the Eq. (2.1) or

equivalently, Eq. (2.2), with respect to the initial parameters, we can obtain the momentum

vector at the target position. This inversion gives:

F−1 : Pf → Pi (2.3)

The most convenient way to solve the problem of the trajectory reconstruction is to formu-

late it in terms of the measured parameters. As it was already mentioned, δf=δi=δ and also,

l i is a constant variable. Thus, the total number of parameters involved in the above equations

is 10 (χi, χf , θi, θf , y i, yf , ϕi, ϕf , lf , δ). Five of them are the measured quantities while the

rest are the reconstructed quantities. The set of the measured parameters could be written as:

Qf=(χf , χi, θf , yf , ϕf) while the set of the reconstructed one as: Qi=(θi, y i, ϕi, lf , δ). The

χi parameter is the initial horizontal position (target) and can be neglected assuming an ion
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beam horizontally focused on the target. Finally, the quantities χf , θf , yf , ϕf are measured

by the focal plane detection array. Thus, Eq. (2.3) becomes:

G−1 : Qf → Qi (2.4)

Other commonly used parameters such as energy or scattering angle can be expressed in terms

of the experimental or reconstructed parameters. As an example, the scattering angle in the

laboratory frame can be reconstructed by the horizontal and vertical angle according to basic

geometrical relations.

Unfortunately, due to the large acceptance of MAGNEX, high order Taylor expansions are

required for an accurate solution of (2.4). In order to solve this equation, a precise technique

was developed at the Michigan State University for another spectrometer (S800) [141]. The

technique is based on the differential algebra formalism and allows a reliable calculation of the

high-order transport matrices, avoiding long ray-tracing processes. The technique was incor-

porated in a computer program called COSY INFINITY [142]. This program allows the user

to insert some specific information of the experiments. It should be noted that the inclusion

of the magnetic fields should be represented by regular functions of the position coordinates

in order to avoid problems at the calculation of high-order derivatives. In order to determine

the appropriate magnetic field functions, mathematical interpolations may be required. Thus,

special attention is required especially at the magnet fringes where the magnetic field may

change rapidly [132, 133, 143, 144]. The interpolated magnetic field function, apparently, has

to be compatible with Maxwell equations.

The members of the MAGNEX group have developed a simulation code in order to check the

accuracy of the reconstruction. This simulation is based on the 2-body reaction kinematics

while it takes into account the MAGNEX geometry. Comparing the experimental data for

an identified reaction process with the simulated ones we can verify the reliability of the

reconstruction. In case of unsatisfactory results, small adjustments at the magnetic field values

or the geometry parameters may be applied in order to improve the reconstruction. The next

step is the calculation of the appropriate matrices by the COSY program taking into account

the magnetic fields [132, 133, 143, 144] as well as the geometry of the quadrupole [132], the

dipole [133] and the FPD [80,84,85]. These matrices and other experimental details, together

with the relevant algorithms developed by the MAGNEX group, are fed to the CHIMERACQ

program in order to generate the reconstructed data. The last ones include both the measured

and the reconstructed parameters. The analysis of these data can be performed either with

PAW [145] or ROOT [146, 147] analysis packages.

36



It is obvious that the trajectory reconstruction in a large acceptance spectrometer, such

as MAGNEX, is a complicated procedure. The reliable description of the magnetic fields, the

accurate knowledge of the MAGNEX geometry and finally the precise measurement of the

Qf vector by the focal plane detector are required for an accurate trajectory reconstruction.

Thanks to the relevant algorithms and simulations developed by the MAGNEX group, the

data analysis is feasible by using commonly used parameters.

2.3 The Silicon detector at 5 degrees

A surface barrier silicon detector (semiconductor detector) is based on a p-n junction.

This junction is the border between a p-type zone, doped with electron-acceptor impurities

and an n-type zone, doped with electron-donor impurities. Both sides are electrically neutral

but, n-type zone has excess of electrons while p-type zone has excess of holes. In this respect,

the free electrons from the n-type material begin to diffuse across the p-n junction between the

two materials and fill some of the holes in the p-type material. This procedure stop when the

system equilibrates and that leads to the formation of a charge-free depletion region between

the p and n type zone. When an incident radiation passes through the depletion region,

pairs of holes and electrons are created. Under the influence of the electric field, electrons

and holes move towards the electrodes creating a pulse proportional to the total number of

electrons - holes pairs. So, this pulse is proportional to the energy loss of the incident particle

inside the detector. The most common type of silicon detectors used for measuring the energy

of charged particles is the ”surface barrier silicon detectors”. These detectors are based on

crystalline semiconductor (silicon) and they have a high resolution as well as the advantage to

be operated in room temperature [97, 148–150].

As it was already mentioned, at the breakup measurement, the alpha particles were detected

by the spectrometer while, the second breakup fragment, deuterons, were detected in a surface

barrier silicon detector, set at θlab = 5o, spanning the angular range between 4.17o and 5.83o.

The main characteristics of the detector are presented in Table 2.3.

A circular collimator with a diameter of 6 mm was placed in front of the detector defining

an experimental active area of 28.3 mm2. Also, the silicon detector was masked, against elastic

scattering deterioration, with 43.6, 30.8 and 25.9 µm thick tantalum foils respectively for the

29, 25 and 20 MeV measurements. These foils absorbed the heavy particles but allowed protons

and deuterons to go through. The energy loss of deuterons and protons inside the Tantalum

foils was calculated via the LISE++ [151,152] program and the results are presented in Figure
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2.8.

Table 2.3: Main characteristics of the 5o surface barrier silicon detector as well as information

about its setup.

Serial No. 47-128 A

Model No. EA-017-050-2000-S

Sensitive Thickness ≥2000 µm

Operating Bias 300 V

Active area 50 mm2

Diameter of the active area ∼ 8 mm

Diameter of the collimator 6 mm

Distance from the target 20.7 mm

Angular range 4.17o-5.83o

2.4 Electronics of the experiment

The read-out electronic chain used in the elastic scattering measurement was already

described in Section 2.2.1, while a relevant schematic diagram is illustrated in Figure 2.7. In

this diagram we can see the path of the signals from each detection device to the Analog

to Digital Converter (ADC) for the parameters of the residual energy (Er), the energy loss

(∆EDC1, ∆EDC2, ∆EDC3, ∆EDC4, ∆EPC) as well as the vertical position (YDC1, YDC2, YDC3,

YDC4). The master trigger is also presented in Figure 2.7. As an example, the master trigger for

the measurement of the ∆E was provided by a logical AND between the output of a logical OR

among the 60 silicon detectors (SiOR) and a logical OR among the DC wires (wireOR) [139].

Regarding the breakup measurement, the signal of the 5o detector was sent to an ORTEC

pre-amplifier, where its output was fed as an input to an ORTEC amplifier providing the

energy signal. The amplified signal was also fed to a CAEN Fast Discriminator providing

the logical signal. The master trigger for the hardware coincidence was provided by an AND

between the output of a logical OR among the 60 silicon detectors (SiOR) and the logical

signal of the silicon detector at 5o.
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Figure 2.8: Energy loss inside the Tantalum foils used in the present experiment as a function

of the deuterons and protons incident energy. The energy loss for deuterons and protons was

calculated via the LISE++ program [151, 152] and the results are denoted with the solid and

dotted-dashed curves, respectively. At region I, the Tantalum foil absorbs all the particle energy,

while at region II the particles are allowed to go through the foil.
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2.5 Target details

The targets were mounted on a target ladder, PC controlled, installed inside the chamber.

Two different target ladders were used in the experiment. The target ladder L1 was used at

the measurements of 29 and 25 MeV while, the ladder L2 was used at the measurements of 20

and 16 MeV. L1 and L2 are shown in Figure 2.9 with all the details of the targets. By changing

the height of the ladder, any one of the targets could be positioned in the beam. At Figure

2.9 we can see CH2 targets of different thicknesses for the main measurements and 12C targets

useful for estimating the background due to carbon contamination at the CH2 targets. Also,

the Quartz, the Allumina and the empty frame were used for the alignment of the beam while,

the 197Au target was used for the solid angle determination as well as for energy calibration

purposes related with the GLORIA telescope [75]. The targets used for the elastic scattering

as well as the breakup measurements are listed in Table 2.4.

Figure 2.9: Schematic representation of the target ladders L1 and L2.
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Table 2.4: Thicknesses of the CH2 and Carbon targets used for the elastic scattering and the

breakup measurements

Measurement E (MeV) Ladder CH2 (µg/cm2) 12C (µg/cm2)

Elastic Scatt. 29 L1 244 239

Elastic Scatt. 25 L1 244 239

Elastic Scatt. 20 L2 308 239

Elastic Scatt. 16 L2 308 239

Breakup 29 L1 308 239

Breakup 25 L1 308 239

Breakup 20 L2 489 460
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Chapter 3

Data Reduction

This chapter includes the data reduction procedure for both the elastic scattering and

breakup data. The first step of the analysis, to be described in section 3.1, includes the

calibration of the horizontal and vertical positions of the spectrometer, as well as the energy

calibration of the silicon detector used for the breakup measurement. The next step includes

the particle identification for both elastic scattering and breakup, by using the reconstructed

data, to be described in section 3.2. Finally, the deduction of the differential cross sections for

the elastic scattering and the breakup data is described in sections 3.3 and 3.4 respectively.

The data analysis was performed using the program PAW [145].

3.1 Calibration procedure

This section includes the calibration procedures which leads to the energy calibration of

both MAGNEX and the 5 degree silicon detector, as well as to the (θ, ϕ) determination for

MAGNEX. The calibration procedure for the MAGNEX spectrometer concerns the horizontal

and vertical positions X and Y (subsection 3.1.1). X leads to the kinetic energy calibration,

while X and Y to the (θ, ϕ) determination. The energy calibration of the detector at 5o will

be given in subsection 3.1.2.

3.1.1 MAGNEX calibration

Horizontal position calibration

As it was already mentioned in the previous chapter, the horizontal positions XDC1, XDC2,
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XDC3, XDC4 can be obtained as a response of four sets of 224 induction pads, located 5 mm

above the DC wires. This is the result of an avalance of electrons creating a distribution,

the center of which is defined by using an algorithm, developed previously by the MAGNEX

group [80, 85, 89]. The relative calibration of the pads was obtained by sending four negative

pulses via a pulser to the wires, with amplitudes of 1.0 V, 1.5 V, 2.0 V and 3.0 V and the

response of each pad was plotted as a function of a reference pad (relative calibration). A

linear correlation was obtained. The next step was the determination of the position of the

avalanche of an event along a DC wire, which was obtained by using Using the calibration

results, it was possible to convert the measured position from the pad number variable to the

horizontal positions XDC1, XDC2, XDC3 and XDC4 in meter units. Since the Z coordinate is

accurately defined for each DC wire by the construction of the focal plane detector, the ion

track in the x-z plane can be obtained (see Figure 2.5(b)) and therefore the extraction of the

horizontal position (χf) at the spectrometer focal plane. Subsequently, the horizontal angle

(θf) can be determined by the slope of the ion trajectory in the x-z plane.

Vertical position calibration

The vertical position calibration was based on the Y spectra obtained by the different DC

wires. A typical Y spectrum for the DC2 wire is shown in Figure 3.1. The observed minima in

this spectrum, are due to the shadows of the horizontal wires which support the entrance Mylar

window. A calibration of the vertical position was feasible by plotting the known positions

of the wires in meter units as a function of the channel of each minimum, assuming a linear

correlation. Thus, an absolute calibration of the YDC1, YDC2, YDC3 and YDC4 parameters was

obtained. Since the Z coordinates for the four different DC wires are known, the linear ion

track in the y-z plane was defined (see Figure 2.5(a)). Therefore, the vertical position (yf )

and vertical angle (ϕf) of the ion track at the focal plane were determined.

3.1.2 Silicon detector calibration

The energy calibration of the silicon detector set at 5o was performed via a triple alpha

source (239Pu,241Am,244Cm) and a pulser generator. In particular, the pulser was calibrated

through the alpha source and the detector was calibrated via the pulser in a large energy range

assuming the following formula:

Energy = A ∗ (channel) +B (3.1)

where A and B are parameters which are obtained by the fit.
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Figure 3.1: A typical Y spectrum for the DC2 wire. The minima are due to the horizontal

metallic wires which support the entrance window of the MAGNEX FPD.
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Figure 3.2: Calibration spectra collected with the silicon detector at 5o. Spectra with a pulser

walkthrough and a triple alpha source are presented in left and right panel respectively. The

amplitudes of the pulser as well as the energies of the alpha peaks are denoted in the figure.

It should be noted that, the triple alpha source energies are: 5.1566, 5.4856 and 5.8048

MeV for the alpha decay of the 239Pu, 241Am and 244Cm, respectively. The amplitudes of the

pulses, sent by the pulser generator, were: 0.1 V, 0.2 V, 0.3 V, 0.4 V, 0.5 V, 0.7 V, 0.9 V,

1.1 V, 1.3 V and 1.5 V spanning a large energy range between ∼200 and ∼3600 channels or

equivalently, ∼ 1.5 to 27.3 MeV. The calibration spectra with the pulser as well as the triple

alpha source are illustrated in Figure 3.2.

3.2 Particle identification

The second step of the data analysis is an accurate particle identification. For both the

elastic scattering and the breakup measurements the ion identification for recoils detected in

the spectrometer, was based on the standard ∆E-E (or similar) technique.

Since the MAGNEX is a detection system with several measured quantities, the ∆E pa-

rameter can be deduced either from the DC wires or the PC ones. In our case, the ∆E

measurement was obtained by the PC wires, since this measurement was of better quality

than the ones obtained by the DC wires. A correction at the measurement of ∆E should be
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applied due to the inclination of the focal plane as well as the large angular acceptance of the

spectrometer [84]. The event by event correction follows the formula (3.2) [88, 89, 153].

∆Ecorr = ∆E
cosθtilt
cosθf

= ∆E
cos(59.2o)

cosθf
(3.2)

Further on, the residual energy (Er) was measured by the 60 silicon detectors at the end of

the ion track. Subsequently the particle identification was performed by two-dimension plots

∆E-Eres or/and ∆E-χf , χf -Eres. Below we will show the reason that we can use also the last

plots for particle identification.

The motion of an ion, with charge q and mass m, moving with velocity u perpendicular to

a uniform magnetic field B, follows the equation below:

q~u× ~B =
m~u2

ρ

quB =
mu2

ρ
→ Bρ =

p

q

(3.3)

where p is the momentum modulus of the ion, ρ is the radius of the ion trajectory and Bρ is

the magnetic rigidity. The momentum modulus can be written as:

p = (2mE)1/2 (3.4)

where E is the kinetic energy of the particle. Furthermore, the radius ρ is related to the

horizontal position χf . So, taking into consideration all the above, χf is connected to the

energy by the following formula:

χ2
f ∝ m

q2
E → χ2

f ∝ m

Z2
E (3.5)

where Z is the atomic number of the detected particle. Since the energy loss inside the FPD

is small, Eq. (3.5) can be approximately written as:

χ2
f ∝ m

Z2
Er (3.6)

Thus, the identification of the various ejectiles is also feasible via the ∆Ecorr%χf or/and the

χf%Er spectra which give supplementary constraints to the ∆E-Eres technique, fundamental

to get a high mass resolution. This technique is also described in Refs. [83, 88, 89, 153].

3.2.1 Identification of the elastic channel

As it was already stated in Chapter 2, the elastic scattering measurement was performed

in three different runs for each energy (EL1, EL2, EL3), in order to measure the complete
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Figure 3.3: A typical two dimensional ∆Ecorr%χf correlation plot. The spectrum refers to an

elastic scattering run at the projectile energy of 29 MeV, using the EL2 set of magnetic fields

(see Table 2.2). The lithium ions are denoted with the red dots.

energy and therefore angular range of the elastically scattered lithium ions. The identification

of these ions was performed by a graphical selection of the lithium contour in the ∆Ecorr%χf

spectra (see Figure 3.3). The next step was the calculation of the matrices useful for the

reconstruction of each run as well as the quality control of the procedure via the simulation

programs developed by the MAGNEX group. The extraction of the reconstructed data was

performed by applying the method described in 2.2.2. Since the reconstruction procedure does

not take into account the energy loss inside the target, an effective beam energy was used to

account for this effect (see Appendix A for details).

A typical reconstructed E-θ correlation plot for 6Li+p at the projectile energy of 29 MeV

is presented in Figure 3.4. In this figure, the reconstructed kinematical plot was obtained

with the superposition of the three different runs (EL1, EL2, EL3), which are designated with

different colors. A kinematical prediction, obtained by the NRV program [154], is also illus-

trated indicating the excellent agreement between the experimental data and the theoretical

prediction. This agreement validates the accuracy of the reconstruction. It is also obvious

the excellent energy and angular resolution. Furthermore, the lithium ions due to the car-
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bon contamination at the CH2 target (top flat line in Fig. 3.4) are well-separated from the
6Li+p elastic scattering data. Despite that, the evaluation of the carbon contamination and

its subtraction from the yield obtained with the CH2 target, was obtained by repeating the

measurement with a carbon target. This correction, together with a noise background was of

the order of 10-20% with main contributor the noise.
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Figure 3.4: A reconstructed E-θ spectrum at the projectile energy of 29 MeV. The two kine-

matical solutions of the reaction, were obtained in 3 different runs with 3 sets of magnetic

fields. The plot shows the superposition of these runs, designated with different colors. The

black solid line represents the kinematical prediction.
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3.2.2 Identification of the breakup channel

The identification of the breakup process was a more complicated procedure than in

the case of elastic scattering. Exclusive yields were determined for alphas observed in the

spectrometer FPD, well identified via the ∆E-E technique, combined with deuterons observed

at the silicon detector at 5o. Deuterons were not resolved from protons as the detector was not

a telescope and our exclusive yield spectra included both α - d and α - p coincidences. However

as it will be shown below, the α - p coincidences were well resolved from α - d coincidences

via kinematics.

The 4He ions in MAGNEX were selected using the ∆Ecorr%χf spectra (see Figure 3.5).

The majority of elastic scattering events were swept out by applying the appropriate magnetic

fields, allowing the detection of alphas in energy slices of 11.0 to 15.5 MeV, 8.4 to 13.3 MeV

and 6.8 to 10.7 MeV for the 29, 25 and 20 MeV run, respectively. A small leftover of the

lithium events was rejected by the appropriate graphical selections in the χf%Er spectra (see

Figure 3.6). Applying these conditions, the 4He ions in MAGNEX were precisely identified.

The deuterons were detected in the silicon detector, set at 5o. As it was mentioned before,

this detector was masked, against elastic scattering deterioration, with tantalum foils. These

foils absorbed all lithiums but allowed light particles to go through. The reaction mechanisms

leading to 4He particles production, detected in MAGNEX in coincidence with light particles

(Z≤2) in the detector set at 5o are the following ones:

1. 6Li + 1H → 4He + 2H + 1H

2. 6Li + 12C → 4He + 2H + 12C

3. 6Li + 1H → 4He + 3He

4. 6Li + 1H → 5Li + 2H → 4He + 1H + 2H

The first one is the reaction under study (projectile breakup on proton target). The presence of

the second reaction (projectile breakup on carbon target) is due to carbon contamination at the

CH2 target. This contribution was of the order of 11-15% for the higher energies and affected

very little the main measurement. However, the background from such events was estimated

via a run with a pure carbon target (see Figure 3.7). Unfortunately, the contribution due to

carbon contamination was much larger at the energy of 20 MeV, where a problem with the

normalization of the data did not allowed the deduction of breakup cross sections. The reaction
1H(6Li,4He)3He was cut out by the magnetic fields selection. Finally, the n-stripping reaction
6Li+1H→5Li+2H→4He+1H+2H (Qvalue=-3.44 MeV) is expected to have very low probability.
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Figure 3.5: A typical two dimensional ∆Ecorr-χf correlation plot for the breakup measurement

at 29 MeV. The helium ions are denoted with the red dots.
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Figure 3.6: A typical two dimensional χf%Er correlation plot for a single silicon detector of

the FPD wall (Sinum=11) at the energy of 29 MeV. The spectrum was obtained by applying

the appropriate graphical condition of Figure 3.5. The clear 4He ions are denoted with the red

dots.
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Figure 3.7: Representative two dimensional plots of the measured energy of alpha particles

(Energy - α) versus the measured energy of deuterons or protons (Energy - d(p)) at the beam

energy of 29 MeV (4.83MeV/u). Alphas were recorded in the MAGNEX spectrometer at an

angular range of θlab = 0 to 10o, while deuterons and the recoiling protons in a silicon detector

set at θlab= 5o. The plot in relation with the CH2 target measurement is presented at the left

panel while the plot from the 12C run is presented at the right panel.
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A Monte Carlo three-body simulation code was used to estimate the total efficiency of the

exclusive breakup measurement [155, 156]. Details of this will be given below (section 3.4.1).

Here we will refer to simulation spectra will be given here in comparison with experimental data

for confirming the kinematics used in the program and for identification of the resonant and

non-resonant part of breakup, unresolved in the experimental data. The program takes into

account the energy loss at the tantalum foils (see Figure 2.8) as well as the angular and energy

thresholds of the detectors. The results of the simulation for the first kinematical solution are

compared with the two-dimensional experimental energy spectra (Eα%Ed(p)) in Figures 3.8,

3.9 and 3.10 for the 29, 25 and 20 MeV measurement, respectively. Particles associated with

energies of the second kinematical solution were cut out by the tantalum foils and the magnetic

fields of the spectrometer. It should be noted the good simulation of the experimental data

and the discrimination of the resonant breakup denoted with the red dots and the continuum

breakup denoted with the green dots. The observed loci at the extreme right region of the

spectra (black line) are due to carbon contamination. (see also Figure 3.7 right). Further on,

one-dimensional experimental coincidence spectra from the 5o detector are compared with the

simulated ones in Figures 3.11, 3.12 and 3.13 for 29, 25 and 20 MeV, respectively. Superimposed

to these spectra are shown in green, spectra obtained with the carbon target, appropriately

normalized to the flux and scattering centers of the CH2 measurement. It comes out that the

carbon contamination is very low for the two highest energies, but not for the lower one, for

which however we have not proceed with final breakup cross sections as the determination of

the beam flux did not look correct. Furthermore, it can be seen that the α - p coincidence

events are well-discriminated from α - d coincidences. Finally, a simulation was also performed

for the 6Li + 1H → 5Li + 2H → 4He + 1H + 2H reaction, which however is expected to have

very low cross section. The results of this simulation are given in Figures 3.11-3.13 with the

dashed blue line and it is clear that its contribution can not affect greatly the breakup data.
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Figure 3.8: Top Figure: Two dimensional plot of the measured energy of alpha particles

(Energy - α) versus measured energy of deuterons or protons (Energy - d(p)) at the beam

energy of 29 MeV (4.83 MeV/u). The observed loci for α - p coincidences, α - d coincidences

due to breakup of 6Li on hydrogen and α - d coincidences due to breakup on carbon are indicated

in this Figure. Bottom Figure: Superimposed on the experimental top spectrum, designed in

black, simulated events of the first kinematical solution for the resonant and direct breakup can

be observed, designated with red and green dots respectively.
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Figure 3.9: Same as in Figure 3.8 but for the energy of 25 MeV (4.17 MeV/u).
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Figure 3.10: Same as in Figure 3.8 but for the energy of 20 MeV (3.33 MeV/u).
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Figure 3.11: Exclusive breakup spectrum, acquired in the 5o silicon detector with the CH2

target at 29 MeV (α-d or α-p coincidences). Simulations for the first kinematical solution for

α - d coincidences, are given with the red dotted-dashed line. The peak at the left corresponds

to α coincidences with the recoiling protons. The spectrum in green, represents an exclusive

spectrum acquired with the carbon target, appropriately normalized. Last, the peak designated

with a blue dashed line, represents a simulation for the reaction 6Li + p → 5Li + d → α + p

+ d arbitrarily normalized (see text for details).
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Figure 3.12: Same as in Figure 3.11 but for the energy of 25 MeV (4.17 MeV/u).
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Figure 3.13: Same as in Figure 3.11 but for the energy of 20 MeV (3.33 MeV/u).
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3.3 Determination of the elastic scattering cross section

The next step, after the identification of the elastic channel, is the extraction of the

differential cross sections. Using the reconstructed E-θ correlation plots (e.g. Figure 3.4)

the data were divided in bins with an angular step of 0.5o, and subsequently counts were

integrated for every bin. The solid angle, defined by four slits located 25 cm from the target,

was determined geometrically (Ω=∆θ*∆ϕ) with an uncertainty of∼2% while the beam charge,

collected by a Faraday cup set at the entrance of MAGNEX was determined with an uncertainty

of ∼5%. A 5% error was adopted also for the scattering centers. Taking into account all the

above, the differential cross sections in the laboratory frame were determined by formula (3.7)

while the normalization of the data was cross-checked via the measurement at the very forward

angles where the elastic scattering is Rutherford.

(dσel

dΩ

)

lab
=

Nel−net

TelΦelΩelǫ
(3.7)

where Nel−net is the number of counts for a specific laboratory angle after subtracting the

background counts Nel−backg from the total counts Nel−tot, Tel and Φel are the scattering centers

and the beam flux respectively, Ωel is the solid angle of the elastic scattering measurement and

ǫ is the efficiency of the FPD (∼89%). The uncertainty Σel related to the differential cross

section was estimated via the following formula:

Σel = ±
(dσel

dΩ

)

lab

√

Nel−tot +Nel−backg

(Nel−net)2
+
(ΣTel

Tel

)2

+
(ΣΦel

Φel

)2

+
(ΣΩel

Ωel

)2

(3.8)

where ΣTel
, ΣΦel

and ΣΩel
are the uncertainties related with the scattering centers, the flux of

the beam and the solid angle respectively. It should be noted that the background is negligible

and affects only a few data points. In general, the error in the determination of the elastic

scattering differential cross section is less than 10%. This error includes the statistical error,

the error due to the (small) background subtraction, errors due to the target thickness as well

as the uncertainty at the beam flux measurement and the solid angle determination. Details

regarding the deduction of the uncertainty Σel are given in the Appendix B.1.

Looking at the correlation plot shown at Figure 3.4, we may see that the angular step

of 0.5o is not the appropriate one for the region of θlab ≥ 8.5o. In particular, due to inverse

kinematics, such an angular step would lead to huge angular uncertainties in the center of mass

frame. As an example, the angular range 9.0-9.5o in the laboratory frame corresponds to an

angular range 78.8o-91.7o (1st solution) or 107.0o-119.2o (2nd solution) in the center of mass

frame. Thus, to overcame this problem, a different procedure was followed for this region.
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First of all, the energy range corresponding to θlab ≥ 8.5o was discretized into equal energy

bins. For each energy an angle in the center of mass frame was attributed, which finally was

transformed to the laboratory via a (cm to lab) program (see Appendix C.1). The solid angle

for each bin was determined geometrically as before (Ω=∆θ*∆φ) but with ∆θ corresponding

to the appropriate angular range (angular range for each energy step). Finally, the differential

cross sections and their uncertainties were determined applying the procedure described above.

The experimental data points were transformed to the center of mass frame by calculating

the appropriate Jacobians (program in Appendix C.2). The data are presented in Figures

3.14-3.17 while, in the majority of the data points, the error bars are included within the data

point size. The present data are also reported in Refs. [73, 74] while tabulated values of them

are given in the Appendix D.

For reasons of completeness, the present elastic scattering data, obtained via inverse kine-

matics, were compared with previous data obtained via direct kinematics measurements at

similar energies [31, 32]. As an example, a comparison between present and previous data at

29 MeV (4.83 MeV/u) is illustrated in Figure 3.18. As it can be seen, the agreement between

themselves is good for the angular range where previous data exist. Taking into account that

our data extend to smaller angles than the previously measured ones, where the scattering is

Rutherford, we can conclude that the present data validate (or not) the normalization of the

previous data. Similar conclusions can be drawn for the lower-energy data, which are presented

in Figures 3.19-3.21.
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Figure 3.14: Present elastic scattering data for 6Li+p at 29 MeV (4.83 MeV/u). The data

uncertainties are included in the size of the data spots and are of the order of 8%. Tabulated

values of the data are given in Appendix D.
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Figure 3.15: Same as in Figure 3.14 but for the energy at 25 MeV (4.17 MeV/u).
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Figure 3.16: Same as in Figure 3.14 but for the energy at 20 MeV (3.33 MeV/u).
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Figure 3.17: Same as in Figure 3.14 but for the energy at 16 MeV (2.67 MeV/u).
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Figure 3.18: Comparison between present and previous experimental data [31,32] at 29 MeV.
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Figure 3.19: Same as in Figure 3.18 but for the energy at 25 MeV (4.17 MeV/u).
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Figure 3.20: Same as in Figure 3.18 but for the energy at 20 MeV (3.33 MeV/u).
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Figure 3.21: Same as in Figure 3.14 but for the energy at 16 MeV (2.67 MeV/u).

3.4 Determination of the breakup cross section

After the identification procedure of the breakup channel, the determination of the double

differential cross sections in the laboratory frame is possible. In a similar way as in the

elastic scattering case, breakup yields were integrated for an angular step of 0.5o, referring

to the CH2 target and the procedure was repeated for the data obtained by the carbon run

in order to subtract the contribution due to carbon contamination. Since, in this case, we

used reconstructed parameters in order to clean the spectra (e.g. yi: beam dimension), the

number of counts was multiplied by a correction factor to account for missing counts due to

the ray-reconstruction procedure efficiency. The events obtained with the carbon run were also

normalized to the scattering centers and flux of the CH2 runs. The total detection efficiency

was calculated by a simulation program while the beam flux was measured by a Faraday cup

located besides the FPD. Thus, the double differential cross sections in the laboratory system

were determined by the following formula:

( d2σbu

dΩαdΩd

)

lab
=

abuNbu − φacarNcar

TbuΦbuεbu
(3.9)
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where Nbu and Ncar are the number of counts for CH2 and carbon runs respectively while

abu and acar are the efficiency corrections due to reconstruction procedure for the CH2 and
12C runs respectively. The φ is a factor used for normalizing the events obtained with the

carbon run to the flux and scattering centers of the CH2 run. Also, Tbu, Φbu and εbu are the

hydrogen scattering centers of the CH2 target, the beam flux and the total detection efficiency,

respectively. The uncertainty Σbu, related to the double differential cross section, was estimated

via the following formula:

Σbu = ±
( d2σbu

dΩαdΩd

)

lab

√

a2buNbu + a2carφ
2Ncar

(abuNbu − acarφNcar)2
+
(ΣTbu

Tbu

)2

+
(ΣΦbu

Φbu

)2

+
(Σεbu

εbu

)2

(3.10)

where ΣTbu
, ΣΦbu

and Σεbu are the uncertainties related with the scattering centers, the flux and

the total efficiency respectively. The uncertainty in the determination of the breakup double

differential cross section includes the statistical error, the error due to the carbon background

subtraction, errors due to the target thickness, the uncertainty at the beam flux measurement

as well as the efficiency determination via the simulation program. A detailed description for

the deduction of the error formula (B.12) is given in the Appendix B.2. Details about both

the simulation program and the extraction of the total efficiency εbu are given at the following

subsection.

3.4.1 Determination of the efficiency

The total efficiency εbu of the exclusive breakup measurement was estimated via the Monte

Carlo three-body simulation program MULTIP [155, 156]. The simulation takes into account

the reaction 6Li+p leading to an excited state of 6Li∗ with an angular distribution, determined

in the CDCC calculations. The 6Li ions acquire randomly an excitation energy inside the

energy bin as specified in the CDCC framework. This includes either the resonance bin at

Ex=2.186 MeV (0.706 MeV above the breakup threshold), or anyone of the continuum bins.

The 6Li∗ breaks in two fragments in its rest frame, with the one (alpha particle) emitted

randomly with a specific energy and momentum and the second (deuteron) with energy and

momentum fulfilling conservation laws. The so obtained energy distributions of the fragments

in the rest frame of 6Li∗ are transformed to the laboratory system by imposing a Galilean

transformation followed by the appropriate axes rotation.

The program takes into account the experimental conditions such as the angular ranges and

the energy thresholds of the detectors while the output of the program provides the energy

and angular distributions for both breakup fragments as well as the correlation plots. A
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selection between the two kinematical solutions is also possible. By comparing, the number

of events with all the experimental conditions at a specific angle with the events without any

condition, the total efficiency for the specific angle can be determined. This efficiency includes

the geometrical efficiency (solid angle) as well as other efficiencies related with the detection

thresholds at the detectors. As an example, we could note the cuts introduced by MAGNEX

as a result of the magnetic fields settings, optimized for avoiding the elastic scattering events.

The detection of the whole energy range of the breakup events would have required several

measurements with different magnetic fields (like the elastic scattering measurements) and,

consequently, much more time than the present measurement. Also, the 5o detector covers a

limited angular range while the tantalum foils introduced an extra energy detection threshold.

Using the simulation program, the efficiency was determined in a compact way minimizing the

uncertainties. The total efficiency in the present experiment was of the order of ∼ 10−8 with

a mean uncertainty of 14% (12 to 22%).

The MULTIP program has been used, so far, for efficiency or/and identification purposes

for the following reactions:

1. 6Li + 1H → 4He + 2H + 1H ( [74] and present work)

2. 6Li + 1H → 5Li + 2H → 4He + 1H + 2H ( [74] and present work)

3. 7Li + 1H → 4He + 3H + 1H ( [78])

4. 7Be+28Si → 4He + 3He + 28Si ( [156])

5. 7Be+28Si → 8Be + 27Si → 4He + 4He + 27Si ( [156, 158])

6. 7Be+28Si → 6Be + 29Si → 4He + 1H + 1H + 29Si ( [156, 158])

7. 8B+208Pb → 7Be + 1H + 208Pb ( [159])

In all the cases the program was found to be very accurate. More technical details about the

program are given in Ref. [156].

3.4.2 Deduction of the breakup angular distributions in the center

of mass frame

Taking into account the efficiency of the detection system and by using Eq. (3.9), the

double differential breakup cross sections were determined for all the measured α - d pairs.
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These cross sections were transformed to the center of mass frame by using the appropriate

Jacobians. In order to determine these factors we assumed the inelastic scattering 6Li + p →
6Li∗ + p with an excitation energy Ex and an angle θc.m.. The excitation energy for each angle

was determined as a weighted mean between the various excitation energies corresponding to

the continuum energy bins adopted in the CDCC calculations, taking as a weight function

the cross section of each energy in the bin. Furthermore, for each pair of laboratory angles

(θαlab, θdlab), a center of mass angle θc.m. was assigned applying the Ohlsen formulas [157]. In

this way, the breakup differential cross sections in the center of mass frame were calculated.

The breakup angular distributions for 29 and 25 MeV are shown in Figures 3.22 and 3.23

respectively, while tabulated values of them are given in the Appendix D. Unfortunately, a

problem at the normalization of the 20 MeV experimental data did not allow the extraction of

a reliable angular distribution for this energy. It should be also noted that, our data are limited

in the angular range between 10o and 90o since particles associated with energies corresponding

to the second kinematical solution were cut out by the tantalum foils or/and the selection of

the detected energy range at the spectrometer. However, this was not a major problem for

the extraction of the total breakup cross section as the angular distribution of the breakup in

the center of mass frame is expected to be almost flat according to our CDCC calculations.

Therefore the experimental total breakup cross sections were estimated by assuming the shape

of the CDCC angular distribution, for angles where data do not exist. The total breakup cross

sections are presented in details in the next chapter where they are compared with theoretical

calculations.
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Figure 3.22: Present breakup angular distribution for the 6Li+p system at 29 MeV (4.83

MeV/u). Tabulated values of the data are given in the Appendix D.
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Figure 3.23: Same as in Figure 3.22 but for the energy at 25 MeV (4.17 MeV/u).

69



70



Chapter 4

Theoretical analysis

This chapter includes the theoretical analysis of the present elastic scattering and breakup

data. The elastic scattering data are considered in the microscopic approach of the Jeukenne-

Lejeune-Mahaux (JLM) potential [5], to be described in section 4.1, as well as to a Continuum

Discretized Coupled Channel (CDCC) framework, to be described in section 4.2. The FRESCO

code [116] adopted for the CDCC calculations provides as output angular distributions for both

elastic scattering (subsection 4.2.1) and breakup (subsection 4.2.2), which can be compared

with the present data. It provides also absorption cross sections, which for reasons of complete-

ness will be presented here (subsection 4.2.2) to be compared with measurements performed

simultaneously as part of an MSc thesis [75, 76].

4.1 JLM Calculations

The elastic scattering data were also considered in a microscopic JLM approach without

any coupling. Into this context, the Jeukenne-Lejeune-Mahaux model [5] was adopted accord-

ing to the code developed by F. S. Dietrich et al. [20] at a standard normalization (λV=1.0 and

λW=0.8). The density for 6Li was derived from K. H. Bray et al. [36]. Calculations, performed

with this code [160], are compared with our elastic scattering data in Figures 4.1-4.4, where

it is seen that they fail to reproduce the data. It should be noted that in the JLM model,

numerical results for the real and imaginary part of the potential were parameterized for ob-

taining analytical forms, taking into account data of medium and heavy mass stable nuclei at

the energy interval 10≤E≤160 MeV/u. The model was successfully applied to stable nuclei

inside that energy region in Refs. [17–19]. Also the calculations were performed for infinite
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nuclear matter and transferred to finite nuclei by applying the local density approximation.

Therefore the application of this approach outside the mass and energy interval, where the

model was validated, constitutes a severe test to it. A comprehensive discussion of these points

can be found in Ref. [14]. The applicability of the JLM method at lower energies (7≤E≤24

MeV/u) was tested in Ref. [20] and for low to high mass numbers in Refs. [18, 21]. Recently,

the JLM potential without any coupling was also validated for the system 17F + p at a rather

low energy ∼ 4 MeV/u [22] providing good agreement with the data. This is the first time that

the model is tested for a very light weakly bound projectile as 6Li and at very low energies E

= 2.6 - 4.8 MeV/u.
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Figure 4.1: Present elastic scattering data for 6Li+p at 29 MeV (4.83 MeV/u) are compared

with a JLM calculation without any coupling, denoted with the blue dashed line (see text).
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Figure 4.2: Same as in Figure 4.1 but at the energy of 25 MeV (4.17 MeV/u).
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Figure 4.3: Same as in Figure 4.1 but at the energy of 20 MeV (3.33 MeV/u).
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Figure 4.4: Same as in Figure 4.1 but at the energy of 16 MeV (2.67 MeV/u).

4.2 Continuum Discretized Coupled Channel Calcula-

tions (CDCC)

Continuum Discretized Coupled Channel (CDCC) calculations were performed in order to

explain the present experimental data in a global framework. For these calculations we follow

the same technique as in [38], where CDCC calculations were presented for the same system

at 155 MeV (25.8 MeV/u).

A cluster α + d model of 6Li was adopted, with all the parameters of the model including

discretization and truncation described in detail in Refs. [64, 73, 74]. The relative orbital

angular momentum between the α particle and the deuteron was limited to the values L=

0, 1, 2 [63, 64, 161]. Tests with higher angular momenta did not change the result. The 3+

resonance was taken into account and was treated as a momentum bin, with a width of 100

keV. Other resonant states were not taken into account since the available energy was such

that it was not possible to excite them [162, 163].

The central part of the entrance potentials for α - p and d - p, was derived as previously [38]

from empirical p - α and p - d potentials by means of a single - folding method. The empirical

potentials were obtained from p + d and p + α elastic scattering studies at E = 2.52 to
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5 MeV/u performed previously [164–170]. These p + d and p + α elastic scattering data

were fitted by simple Woods Saxon form factors for both real volume and imaginary volume

parts for the p + α system and a real volume and a surface imaginary term for the p + d

system [160]. The optical model potential parameters for the p + α and p + d interactions are

listed in Tables 4.1 and 4.2 respectively. As it can be seen, the radii and diffusenesses remain

constant for all energies, while the depths follow the formulas (4.1) and (4.2) for α - p and d -

p potentials, respectively.

Vαp = 68.528− 3.91577E

Wαp = 0.033 + 0.0014E
(4.1)

Vdp = 92.1207− 5.2642E

Wdp = 0.5995 + 0.0241E
(4.2)

where V and W are the depths for the real and the imaginary part of the potential respec-

tively, while E is the reaction energy in the laboratory frame in MeV/u. A spin-orbit term

was necessary for the best fit of the data but, it was not possible to be used in the CDCC

calculation as a part of p + d or p + α interaction. Instead of that, a spin-orbit potential of

Thomas form with parameters Vso=4.26 MeV, rso=1.10 fm and αso=0.35 fm was added to the

diagonal 6Li + p Watanabe folding potentials.

Further on, the potential binding the deuteron to α particle core was assumed to have a

Woods - Saxon shape as described in Ref. [64]. Subsequently, all the potentials mentioned above

were fed to a FRESCO calculation [116]. This calculation gives in detail angular distributions

for both elastic scattering and breakup modes as well as absorption cross sections and total

reaction cross sections. The first three observables were tested in the present experiment, while

the first two are the subject of the present thesis.

4.2.1 Elastic Scattering

The results of the CDCC calculations described above, were compared with the elastic

scattering data at all four energies in Figures 4.5-4.8. In these figures, the full CDCC calcu-

lations are denoted with the black solid line while calculations allowing coupling only to the

direct excitation of the continuum, omitting coupling to the resonance, are denoted with the

green dashed line. Furthermore, one-channel calculations, omitting coupling to the continuum,

are depicted with the blue dotted-dashed line. Looking at the figures 4.5-4.8, we can see that,
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Table 4.1: Optical model parameters for the system 4He + p, deduced by fitting previous

experimental data [169, 170] adopting a Woods - Saxon potential (real and imaginary volume

terms). The nuclear radius was R=rV (W )*4
1/3 and the Coulomb radius was RC=1.25*41/3. A

spin orbit term with parameters Vso=10.0 MeV, rso=1.47 fm and αso=0.40 fm was necessary

for the best fit of the data but it was not used in the FRESCO calculation.

E (MeV) Vαp (MeV) rV (fm) αV (fm) Wαp (MeV) rW (fm) αW (fm)

29 49.811 1.10 0.477 0.040 1.10 0.477

25 52.278 0.039

20 55.567 0.038

16 58.230 0.037

Table 4.2: Optical model parameters for the system 2H+ p, deduced by fitting previous exper-

imental data [164–168] adopting a Woods - Saxon potential (real volume and imaginary surface

terms). The nuclear radius was R=rV (W )*1
1/3 and the Coulomb radius was RC=1.30*11/3. A

spin orbit term with parameters Vso=19.9 MeV, rso=2.94 fm and αso=0.85 fm was necessary

for the best fit of the data but it was not used in the FRESCO calculation.

E (MeV) Vdp (MeV) rV (fm) αV (fm) Wdp (MeV) rW (fm) αW (fm)

29 66.958 1.25 0.501 0.715 1.20 0.517

25 70.274 0.700

20 74.696 0.679

16 78.276 0.663

coupling to the full continuum (direct and resonant) is strong and adequate in order to de-

scribe the elastic scattering data in the most effective way. However, coupling to direct breakup

makes a very slight change from the one-channel calculations, especially at the lower energies.

Thus, the most important coupling at all energies is the coupling to resonant breakup while,

the coupling to direct breakup has in principle a small impact, which however becomes larger

at the higher energies. This behaviour of weak coupling to direct breakup and strong coupling

to the resonant breakup is in accordance with similar findings of 6Li scattering in medium

and heavy mass targets [66, 67]. Another interesting point is that, at the lower energies the

coupling to the resonance is very strong although, the resonant breakup cross section is quite

low. In fact, at 16 MeV, the resonant breakup cross sections was only 0.03 mb out of a total

breakup of 69.7 mb. A similar striking situation was recently reported for the elastic scattering
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of 7Li + p [78], where the resonant breakup was almost zero, ∼ 0.5 mb, in comparison with

a total breakup cross section of ∼ 66 mb, but with a coupling to the resonant breakup to be

dominant. This may be an example of a ”virtual” coupling to continuum.
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Figure 4.5: Present elastic scattering data for 6Li+p at 29 MeV (4.83 MeV/u). The data

are compared with full CDCC calculations (solid black line), one-channel calculations (dotted-

dashed blue line), and calculations with coupling only to direct breakup (dashed green line).
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Figure 4.6: Same as in Figure 4.5 but at the energy of 25 MeV (4.17 MeV/u).
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Figure 4.7: Same as in Figure 4.5 but at the energy of 20 MeV (3.33 MeV/u).
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Figure 4.8: Same as in Figure 4.5 but at the energy of 16 MeV (2.67 MeV/u).

For reasons of completeness, the validity of the present elastic scattering data was checked

into the global CDCC framework applied previously by Guo et al. [39] and Matsumoto et

al. [40] for 6Li + p in a wide energy range from 5 to 72 MeV/u. This was performed adopting

the input potentials α - p and d - p from Ref. [38] at the energy of 25.8 MeV/u but, scaling down

the depths of the input potentials [171], according to the energy-dependent scaling procedure

given in Ref. [39]. In this respect, the normalization factors for E≤30 MeV/u are given by the

formula:
λV (E) = 1 + 0.0035E

λW (E) = 0.015E
(4.3)

where E is the reaction energy in the laboratory frame in MeV/u units. The normalization

factors determined for the real and the imaginary part are presented in Table 4.3. The optical

model parameters for the p - α and p - d interactions are presented in Tables 4.4 and 4.5

respectively. The calculations with this global approach (CDCC-G) are compared with the

data as well as the main CDCC calculations (CDCC) in Figures 4.9-4.12. The calculation

using this approach are in fair agreement with the experimental data in lower energies and

larger angles while a good agreement is seen for the higher energies. Thus, the validity of

Guo/Matsumoto approach seems to be extended to a lower energy region (4.0 - 4.8 MeV/u)

than before (5 - 72 MeV/u).
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Table 4.3: Normalization factors determined for the real and the imaginary part of the optical

potential according to the energy-dependent scaling procedure given in Ref. [39].

E (MeV) λV λW

29 1.0168 0.0720

25 1.0145 0.0622

20 1.0116 0.0497

16 1.0092 0.0394

Table 4.4: Optical model parameters for the system 4He + p, adopting the potential from

Ref. [38] but, scaling down the depths of the real and imaginary part of the potential, according

to the energy-dependent scaling procedure given in Ref. [39]. Woods - Saxon volume form

factors for both real and imaginary part were adopted. The nuclear radius was R=rV (W )*4
1/3

and the Coulomb radius was RC=1.25*41/3.

E (MeV) Vαp (MeV) rV (fm) αV (fm) Wαp (MeV) rW (fm) αW (fm)

29 49.766 1.10 0.477 0.040 1.10 0.477

25 49.659 0.035

20 49.517 0.028

16 49.399 0.022

Table 4.5: Optical model parameters for the system 2H + p, adopting the potential from

Ref. [38] but, scaling down the depths of the real and imaginary part of the potential, according

to the energy-dependent scaling procedure given in Ref. [39]. Woods - Saxon volume and

surface form factors were adopted for the real and imaginary part respectively. The nuclear

radius was R=rV (W )*1
1/3 and the Coulomb radius was RC=1.30*11/3.

E (MeV) Vdp (MeV) rV (fm) αV (fm) Wdp (MeV) rW (fm) αW (fm)

29 66.899 1.25 0.501 0.717 1.20 0.517

25 66.754 0.623

20 66.563 0.495

16 66.405 0.395
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Figure 4.9: Present elastic scattering data for 6Li+p at 29 MeV (4.83 MeV/u) are compared

with two different CDCC calculations. The calculation with the α - p and d - p potentials

obtained by fitting previous data (CDCC) is denoted with the black solid line while, the calcula-

tion in the Guo framework (CDCC-G) is denoted with the blue dotted-dashed line. It should be

noted that, for this energy, the calculations CDCC and CDCC-G gave almost the same results

therefore lines are not distinguished from each other.
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Figure 4.10: Same as in Figure 4.9 but at the energy of 25 MeV (4.17 MeV/u).
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Figure 4.11: Same as in Figure 4.9 but at the energy of 20 MeV (3.33 MeV/u).
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Figure 4.12: Same as in Figure 4.9 but at the energy of 16 MeV (2.67 MeV/u).

4.2.2 Breakup

Breakup data are compared with the full CDCC angular distributions, denoted with the

black solid lines, in Figures 4.13 and 4.14 for the energies of 29 and 25 MeV respectively. As

it can be seen, the agreement into the error is satisfactory, although the calculations suggest

lower breakup cross sections. In the same figures, CDCC calculations taking into account

coupling to the 3+ resonant state only are presented with the red dotted-dashed lines. We can

see that, the sequential breakup due to the first resonance state (3+) accounts for ∼ 50-60%

of the total breakup cross section for the highest two energies. Although we have not breakup

data for the lower energies at 16 and 20 MeV, but where we have data for elastic scattering,

for reason of completeness we present in Figure 4.15, the energy dependence of the breakup

cross sections from 16 to 29 MeV (full CDCC calculations and calculations referring only to

resonant breakup). It can be seen that for the lower energies the resonant breakup comprises

∼ 38% for the energy of 20 MeV and drops almost to zero at 16 MeV.

Tabulated values of total breakup as well as resonant breakup cross sections obtained by

the CDCC calculations are presented in Table 4.6. The experimental breakup cross sections,

presented also in Table 4.6, were obtained by assuming the shape of the CDCC angular distri-
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butions (see Figure 4.16) for the angular region where experimental breakup data do not exist.

The CDCC calculations seem to underestimate the total breakup cross section by ∼27% for

the energy of 29 MeV while, for the energy at 25 MeV the agreement is satisfactory at least

into the error.

It should be noted here that, a third observable measured in the present experiment as a

part of an MSc thesis [75] and reported in Ref. [76], is the cross section of the reaction 6Li

+ p → 4He + 3He. As this reaction is the only reaction with significant cross section at the

studied energies, it can be compared with the absorption cross section given as output in our

FRESCO CDCC calculation. Therefore, we present additionally to the breakup cross sections

in Table 4.6, absorption cross sections, obtained by the CDCC calculations to be compared

with experimental values [76]. The measurement of the 6Li + p → 4He + 3He reaction was

performed simultaneously with the breakup measurement but, with the GLORIA array [117]

installed in the scattering chamber. The agreement between the experimental absorption cross

section and the theoretical ones is excellent, giving further support to the global interpretation

of the 6Li + p reaction in a CDCC framework and in the validity of the experimental data.

In the same table, the reorientation cross section, which represents the flux that is lost to

the 1+ ground state of 6Li coupling the different m sub-states, is also shown. This quantity

is not possible to be measured and does not affect the energy of the outgoing 6Li or any of

the fragments. Nevertheless, it is a real effect which changes the elastic scattering angular

distribution and the total reaction cross section [172]. Finally, the total reaction cross sections

according to the CDCC calculations are also presented.
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Figure 4.13: Experimental and theoretical angular distributions in the center of mass frame,

for the breakup of 6Li on proton target at 29 MeV (4.83 MeV/u). The experimental data,

referring to the first kinematical solution, are designated with red stars. The black solid line

represents a full CDCC calculation while the red dotted-dashed line represents a CDCC calcu-

lation taking account coupling only to first resonance (3+).
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Figure 4.14: Same as in Figure 4.13 but for at energy of 25 MeV (4.17 MeV/u).

Table 4.6: Reaction cross sections for the system 6Li + p. Experimental breakup cross sec-

tions, σbr and CDCC breakup cross sections, σCDCC
br , are presented in second and third column

respectively. The numbers at the fourth column are the values of the resonant breakup ac-

cording to CDCC calculations (σCDCC
resbr ). Also, experimental absorption cross sections measured

previously via the reaction 6Li + p → 3He + 4He, σabs [76] as well as absorption cross sections

according to CDCC, σCDCC
abs , are presented at the fifth and sixth column respectively. The

reorientation cross sections due to the 1+ ground state of 6Li, σCDCC
reor , and the total reaction

cross sections, σCDCC
tot , are shown in the last two columns.

E (MeV) σbr σCDCC
br σCDCC

resbr σabs σCDCC
abs σCDCC

reor σCDCC
tot

29 370±64 269.4 143.3 95±2 109.5 72.4 451.3

25 235±46 200.0 117.0 131±6 133.0 98.7 431.7

20 - 102.9 37.5 140±8 162.0 123.4 388.3

16 - 69.7 0.03 111±2 130.7 141.5 341.9
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Figure 4.15: Energy dependence of the total breakup cross sections. Experimental total

breakup cross sections, designated with the red stars, are compared with the total breakup as

well as the resonant breakup values obtained by the CDCC calculations.
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Figure 4.16: CDCC breakup angular distributions for all the energies in the full angular range

θc.m.= 0o - 180o.
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Chapter 5

Conclusions

In the present work, elastic scattering measurements for the 6Li + p system were performed

at four near barrier energies, namely 16, 20, 25 and 29 MeV, in inverse kinematics with the

MAGNEX spectrometer [80–89]. In the same experiment exclusive breakup measurements

were obtained at 25 and 29 MeV. Both experimental results were considered in a CDCC

framework.

From the present analysis, significant conclusions can be drawn and may be summarized

as follows:

1. The present elastic scattering data in inverse kinematics are found in good consistency

with previous data obtained in direct kinematics. As the present data extend to more

forward angles than the previous ones, where the scattering is Rutherford, they validate

(or not) their normalization.

2. The elastic scattering data are considered in the microscopic approach of the Jeukenne-

Lejeune-Mahaux (JLM) potential [5] (without any coupling), which fails to reproduce

the data. It should be noted that this is the first time that the JLM model is tested

both for a very light weakly bound projectile as 6Li and at very low energies E = 2.6 -

4.8 MeV/u.

3. Extensive Continuum Discretized Coupled Channel (CDCC) calculations were performed

and compared with the elastic scattering and breakup data. The description of the elas-

tic scattering experimental data is excellent while, the description of the breakup data

is satisfactory although the trend of CDCC suggests lower breakup cross sections. To-

tal breakup cross sections were obtained integrating the differential cross sections by
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assuming the shape of the CDCC angular distributions for the angular region where

experimental breakup data do not exist. According to the CDCC calculations, the con-

tribution of breakup due to the first resonance comprises 50-60 % of the total value for

the two higher energies, ∼ 38 % for 20 MeV and ∼ 0.04 % for the lower energy of 16

MeV.

4. Monte Carlo simulations imitating the CDCC model [155, 156] describe very well the

experimental energy distributions of the breakup fragments, validating the philosophy of

the continuum discretization behind the CDCC approach.

5. Comparing full CDCC calculations with one-channel calculations as well as calculations

allowing coupling only to the direct excitation of the continuum, we can see that coupling

to the full continuum (direct and resonant) is strong and adequate in order to describe

the elastic scattering data in the most effective way. Nevertheless, the most important

coupling at all energies is the coupling to resonant breakup while, the coupling to direct

breakup has in principle a small influence, which becomes larger at the highest energies.

This behavior of weak coupling to direct breakup and strong coupling to the resonant

breakup is in accordance with similar findings of 6Li scattering on medium and heavy

mass targets such as 64Zn [66] and 144Sm [67].

6. At the lower energies, according to the CDCC calculations, the coupling to 3+ resonance

is very strong although, the resonant breakup cross section seems to be very low. In par-

ticular, at 16 MeV, the resonant breakup cross sections was only 0.03 mb in comparison

with a total breakup of 69.7 mb. Such a striking situation was recently reported for the

elastic scattering of 7Li + p [78], where although the resonant breakup was ∼ 0.5 mb out

of a total breakup cross section of ∼ 66 mb, the coupling to the resonant breakup was

dominant. This interesting phenomenon may be an example of a ”virtual” coupling to

continuum.

7. The absorption cross section given as output in our CDCC calculation is compared

with the experimental cross section of the reaction 6Li + p → 4He + 3He, the only

available reaction channel with significant probability. The measurement of this reaction

was performed simultaneously with the present one but comprised the subject of an

Msc thesis and was reported before [75, 76]. The agreement between the experimental

absorption cross section and the theoretical one for all energies is excellent, giving further

support to the global interpretation of the 6Li + p reaction in a CDCC framework and

the validity of the experimental data.
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8. The validity of the present elastic scattering data was also checked into the global CDCC

framework applied previously by Guo et al. [39] for 6Li + p in a wide energy range from 5

to 72 MeV/u. The calculations [171] using the energy-dependence proposed in Ref. [39]

are in fair agreement with the experimental data in lower energies and larger angles and

in good agreement with the data at the higher energies.

Finally, we should underline that our technique, for measurements at a close to zero angle,

obtained with the MAGNEX spectrometer, is well established, and it can be applied in future

measurements with stable weakly bound or radioactive projectiles. It would be very interest-

ing to perform more exclusive breakup measurements as well as elastic scattering and other

involved reaction measurements in order to perform a global investigation into the CDCC

framework, using similar stable weakly bound or radioactive projectiles on light targets in

inverse kinematics. The MAGNEX spectrometer gives us the opportunity to perform such

experiments obtaining data of rare quality. Into this plan has been proposed by Prof. A.

Pakou, the study of the 6Li + 1H [73, 74, 76] and 7Li + 1,2H [77, 78] which have been already

performed while, an experiment related with the study of 9Be + p system [79] is scheduled to

be performed during 2017.

In summary,

exclusive breakup measurements performed for the first time at near barrier energies (∼ 5 x

VC.b.), considered with elastic scattering and reaction cross sections measurements, performed

in the same experiment, present in total a very good agreement with CDCC calculations. The

sequential excitation to the first resonance (3+) at 2.186 MeV is strong and likewise is the

effect on elastic scattering due to coupling to this resonant state. The direct excitation to

continuum is substantial and likewise its effect on elastic scattering but only for the highest

energy. As we go lower in energy this effect is reduced and become unimportant at the lowest

energy of 16 MeV (∼ 2.7 MeV/u). It should be stressed out that at this low energy, although

the direct breakup is substantial and the resonant breakup is negligible, the dominant coupling

to breakup is the resonant one. Further on, the JLM model was tested for the first time from

the point of view of a very light weakly bound projectile as 6Li as well as at very low energies,

E = 2.6 - 4.8 MeV/u. The model was not found adequate to describe the elastic scattering

data. Finally, it should be noted that our technique is well-established both experimentally

and theoretically allowing the study of similar systems with stable weakly bound or radioactive

projectiles on proton/deuteron targets, with the MAGNEX spectrometer.

The results of the present work have been reported in peer-reviewed scientific journals in

Refs. [73, 74] as well as to conference proceedings in Refs. [173–175].
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Appendix A

Determination of the effective beam

energy

As it was already stated in Chapter 3, the reconstruction procedure does not take into

account the energy loss inside the target [89,153]. Thus, it is necessary to calculate an effective

beam energy (Eeff
beam) which corresponds to a zero-thickness target. The first step in order to

do that is the calculation of the reaction energy (Ereact) assuming that the reaction take place

at the middle of the target. Subsequently, the ejectile energy after the target (Eeject) should

be calculated for each scattering angle. For the sake of simplicity, we assume as scattering

angle the angle of the MAGNEX optical axis (θopt) which is an average between the scattering

angles. Finally, the effective beam energy (Eeff
beam) was determined as the beam energy cor-

responding to ejectile energy Eeject at scattering angle θopt assuming a zero-thickness target.

The determination of the effective beam energy was performed by using the NRV kinematical

program [154] as well as the LISE++ program [151,152] for the calculation of the energy loss.

Apparently, due to the use of thin targets, the effective beam energy was slightly different from

the projectile beam energy. The procedure is also displayed in Figure A.1.
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Figure A.1: Description of the effective beam energy determination.
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Appendix B

Error calculation

B.1 Error calculation for elastic scattering data

As it was already mentioned in Chapter 3, the elastic scattering differential cross section

in the laboratory frame was determined by the following formula:
(dσel

dΩ

)

lab
=

Nel−net

TelΦelΩelǫ
=

Nel−tot −Nel−backg

TelΦelΩelǫ
(B.1)

where Nel−net is the number of counts for a specific laboratory angle after subtracting the

background counts Nel−backg from the total counts Nel−tot, Tel and Φel are the scattering centers

and the beam flux respectively, Ωel is the solid angle during the elastic scattering measurement

and ǫ is the efficiency of the FPD.

Using the error propagation formula [149], the uncertainty Σ related to the elastic scattering

differential cross section is calculated as follows:
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Thus, the uncertainty Σel related to the elastic scattering differential cross section was esti-

mated via the following formula:

Σel = ±
(dσel

dΩ

)

lab

√
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(Nel−net)2
+
(ΣTel
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+
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(B.6)

where ΣTel
, ΣΦel

and ΣΩel
are the uncertainties related with the scattering centers, the flux of

the beam and the solid angle respectively.

B.2 Error calculation for breakup data

Regarding the breakup process, the double differential cross section in the laboratory

system was determined by the following formula:

( d2σbu

dΩαdΩd

)

lab
=

abuNbu − φacarNcar

TbuΦbuεbu
(B.7)

where Nbu and Ncar are the number of counts for CH2 and carbon runs respectively while

abu and acar are the efficiency corrections due to reconstruction procedure for the CH2 and
12C runs respectively. The φ is a factor used for normalizing the events obtained with the

carbon run to the flux and scattering centers of the CH2 run. Also, Tbu, Φbu and εbu are the

hydrogen scattering centers of the CH2 target, the beam flux and the total detection efficiency,

respectively.

Defining a parameter B as:

B =
( d2σbu

dΩαdΩd

)

lab
(B.8)

and by using the error propagation formula, the uncertainty ΣB related to the breakup double

differential cross section is calculated as follows:
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So, the uncertainty Σbu, related to the double differential cross section, was estimated via the

following formula:

Σbu = ±
( d2σbu

dΩαdΩd

)

lab

√

a2buNbu + a2carφ
2Ncar
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(B.12)

where ΣTbu
, ΣΦbu

and Σεbu are the uncertainties related with the scattering centers, the flux

and the total efficiency respectively. The error at the determination of the breakup double

differential cross section includes the statistical error, the error due to the carbon background

subtraction, errors due to the target thickness, the uncertainty at the beam flux measurement

as well as the efficiency determination via the simulation program.
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Appendix C

Computer codes

C.1 Routines in C language: C.M. to Lab converter

The following programs, in C language, were used in the data analysis in order to convert

the differential cross sections from the center of mass frame to the laboratory frame. The first

code was used for the data associated with the first solution while the second one for the data

associated with the second solution. The programs follow the prescription of Ref. [176].

1st solution

# include<s t d i o . h>

# include<s t d l i b . h>

# include<math . h>

int main (void ){
int i ; // De f i n i t i on o f an i n t e g e r number requ i r ed in the ”For” loop .//

f loat b [ 1 6 ] , y [ 1 6 ] ,E [ 1 6 ] ;

double the ta l ab [ 1 6 ] , s igmalab [ 1 6 ] , the ta l abrad [ 1 6 ] ;

double thetacm , sigmacm ,M1,M2,M3,M4,Q,ET,E1 ;

double A,B,C,D,M,m1,m2,m3,m4, e3 ;

double gamma,Ecm,VCM, u , tantheta [ 1 6 ] ;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\ n” ) ;
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p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗ Ioannina 2013 , ∗\n” ) ;
p r i n t f ( ”∗ CM2Lab conver t e r ∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ” Please ent e r the mass o f the p r o j e c t i l e in amu:\n” ) ;
s can f ( ”%l f ” , &m1) ; //Read the number and s t o r e i t in the v a r i a b l e m1.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the t a r g e t in amu:\n” ) ;
s can f ( ”%l f ” , &m2) ; //Read the number and s t o r e i t in the v a r i a b l e m2.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the l i g h t product in amu:\n” ) ;
s can f ( ”%l f ” , &m3) ; //Read the number and s t o r e i t in the v a r i a b l e m3.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the heavy product in amu:\n” ) ;
s can f ( ”%l f ” , &m4) ; //Read the number and s t o r e i t in the v a r i a b l e m4.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the energy o f the r e a c t i on in MeV: \n” ) ;
s can f ( ”%l f ” , &E1 ) ; //Read the number and s t o r e i t in the v a r i a b l e E1 .//

M1=931.478∗m1; //Convert the mass from amu to MeV/c ˆ2.//

M2=931.478∗m2; //Convert the mass from amu to MeV/c ˆ2.//

M3=931.478∗m3; //Convert the mass from amu to MeV/c ˆ2.//

M4=931.478∗m4; //Convert the mass from amu to MeV/c ˆ2.//

Q=M1+M2−M3−M4; // Ca l cu l a t e the Q−va lue o f the reac t i on .//

//Q=0.00;

ET=E1+Q;

M=(M1+M2)∗ (M3+M4) ;

A=(M1∗M4∗(E1/ET))/M;

B=(M1∗M3∗(E1/ET))/M;
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C=(M2∗M3∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

D=(M2∗M4∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

struct data{// De f i n i t i on o f a s t r u c t u r e c a l l e d data .//

f loat thetacm ;

f loat sigmacm ;

} l i s t [ 1 6 ] ;

// Each component o f the s t r u c t u r e i s a (1 x16 ) matrix . //

FILE ∗ fp ; // De f i n i t i on o f a po in te r .//

fp=fopen ( ” input . txt ” , ” r ” ) ;

/∗
Open the input . t x t f i l e and read i t .

This f i l e conta ins two columns correspond ing

to thetacm and sigmacm .

∗/

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ”%f \n” ,Q) ;

Ecm=(M2/(M1+M2))∗E1 ;

VCM=( sq r t (2∗M1∗E1 ) ) / (M1+M2) ;

u=sq r t ( ( 2 / (M3+M4) )∗ (M4/M3)∗ (Ecm+Q) ) ;

gamma=(VCM/u ) ;
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p r i n t f ( ”thetaLAB thetaCM sigmaLAB sigmaCM\n” ) ;

for ( i =0; i <16; i++){
// De f i n i t i on o f a ”For” loop which i s repea ted 16 t imes . //

f s c a n f ( fp , ”%f %f ” , &l i s t [ i ] . thetacm , &l i s t [ i ] . sigmacm ) ;

// Scan the t x t f i l e and f i l l the matr ices . //

b [ i ]= l i s t [ i ] . thetacm ;

// Store each va lue o f l i s t . thetacm matrix to the b matrix . //

y [ i ]=(3 .14159∗b [ i ] ) / ( 1 8 0 . ) ;
// Convert thetacm from degrees to rad . //

E[ i ]=B+D+(2∗( s q r t (A∗C))∗ cos ( y [ i ] ) ) ;

p r i n t f ( ”\n” ) ;

tantheta [ i ]= s i n ( y [ i ] ) / ( cos ( y [ i ])+gamma ) ;

the ta l abrad [ i ]=atan ( tantheta [ i ] ) ;

// Ca l cu l a t e t h e t a l a b in rad . //

the ta l ab [ i ]=( the ta l abrad [ i ]∗180 ) / 3 . 1 4 159 ;
// Convert the t h e t a l a b from rad to degrees .//

p r i n t f ( ”\n” ) ;
i f ( the ta l ab [ i ]<0){

sigmalab [ i ]= l i s t [ i ] . sigmacm ∗(gamma∗( cos ( the ta l abrad [ i ] ) )+

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) ∗
(gamma∗( cos ( the ta l abrad [ i ] ) )+

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the l a b system . //
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p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

(180+ theta l ab [ i ] ) , l i s t [ i ] . thetacm , sigmalab [ i ] , l i s t [ i ] . sigmacm ) ;

// Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

else {
sigmalab [ i ]= l i s t [ i ] . sigmacm ∗(gamma∗( cos ( the ta l abrad [ i ] ) )+

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) ∗
(gamma∗( cos ( the ta l abrad [ i ] ) )+

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the l a b system . //

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

the ta l ab [ i ] , l i s t [ i ] . thetacm , sigmalab [ i ] , l i s t [ i ] . sigmacm ) ;

// Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

} // End of the ”For” loop . //

f c l o s e ( fp ) ;

return 0 ;

}

2nd solution

# include<s t d i o . h>

# include<s t d l i b . h>

# include<math . h>

int main (void ){
int i ; // De f i n i t i on o f an i n t e g e r number requ i r ed in the ”For” loop .//

f loat b [ 1 6 ] , y [ 1 6 ] ,E [ 1 6 ] ;

double the ta l ab [ 1 6 ] , s igmalab [ 1 6 ] , the ta l abrad [ 1 6 ] ;

double thetacm , sigmacm ,M1,M2,M3,M4,Q,ET,E1 ;

double A,B,C,D,M,m1,m2,m3,m4, e3 ;

double gamma,Ecm,VCM, u , tantheta [ 1 6 ] ;
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p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗ Ioannina 2013 , ∗\n” ) ;
p r i n t f ( ”∗ CM2Lab conver t e r ∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ” Please ent e r the mass o f the p r o j e c t i l e in amu:\n” ) ;
s can f ( ”%l f ” , &m1) ; //Read the number and s t o r e i t in the v a r i a b l e m1.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the t a r g e t in amu:\n” ) ;
s can f ( ”%l f ” , &m2) ; //Read the number and s t o r e i t in the v a r i a b l e m2.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the l i g h t product in amu:\n” ) ;
s can f ( ”%l f ” , &m3) ; //Read the number and s t o r e i t in the v a r i a b l e m3.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the heavy product in amu:\n” ) ;
s can f ( ”%l f ” , &m4) ; //Read the number and s t o r e i t in the v a r i a b l e m4.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the energy o f the r e a c t i on in MeV: \n” ) ;
s can f ( ”%l f ” , &E1 ) ; //Read the number and s t o r e i t in the v a r i a b l e E1 .//

M1=931.478∗m1; //Convert the mass from amu to MeV/c ˆ2.//

M2=931.478∗m2; //Convert the mass from amu to MeV/c ˆ2.//

M3=931.478∗m3; //Convert the mass from amu to MeV/c ˆ2.//

M4=931.478∗m4; //Convert the mass from amu to MeV/c ˆ2.//

Q=M1+M2−M3−M4; // Ca l cu l a t e the Q−va lue o f the reac t i on .//

//Q=0.00;
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ET=E1+Q;

M=(M1+M2)∗ (M3+M4) ;

A=(M1∗M4∗(E1/ET))/M;

B=(M1∗M3∗(E1/ET))/M;

C=(M2∗M3∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

D=(M2∗M4∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

struct data{// De f i n i t i on o f a s t r u c t u r e c a l l e d data .//

f loat thetacm ;

f loat sigmacm ;

} l i s t [ 1 6 ] ;

// Each component o f the s t r u c t u r e i s a (1 x16 ) matrix . //

FILE ∗ fp ; // De f i n i t i on o f a po in te r .//

fp=fopen ( ” input . txt ” , ” r ” ) ;

/∗
Open the input . t x t f i l e and read i t .

This f i l e conta ins two columns correspond ing

to thetacm and sigmacm .

∗/

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ”%f \n” ,Q) ;

Ecm=(M2/(M1+M2))∗E1 ;

VCM=( sq r t (2∗M1∗E1 ) ) / (M1+M2) ;
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u=sq r t ( ( 2 / (M3+M4) )∗ (M4/M3)∗ (Ecm+Q) ) ;

gamma=(VCM/u ) ;

p r i n t f ( ”thetaLAB thetaCM sigmaLAB sigmaCM\n” ) ;

for ( i =0; i <16; i++){
// De f i n i t i on o f a ”For” loop which i s repea ted 16 t imes . //

f s c a n f ( fp , ”%f %f ” , &l i s t [ i ] . thetacm , &l i s t [ i ] . sigmacm ) ;

// Scan the t x t f i l e and f i l l the matr ices . //

b [ i ]= l i s t [ i ] . thetacm ;

// Store each va lue o f l i s t . thetacm matrix to the b matrix . //

y [ i ]=(3 .14159∗b [ i ] ) / ( 1 8 0 . ) ;
// Convert thetacm from degrees to rad . //

E[ i ]=B+D+(2∗( s q r t (A∗C))∗ cos ( y [ i ] ) ) ;

p r i n t f ( ”\n” ) ;

tantheta [ i ]= s i n ( y [ i ] ) / ( cos ( y [ i ])+gamma ) ;

the ta l abrad [ i ]=atan ( tantheta [ i ] ) ;

// Ca l cu l a t e t h e t a l a b in rad . //

the ta l ab [ i ]=( the ta l abrad [ i ]∗180 ) / 3 . 1 4 159 ;
// Convert the t h e t a l a b from rad to degrees .//

p r i n t f ( ”\n” ) ;
i f ( the ta l ab [ i ]<0){

sigmalab [ i ]= l i s t [ i ] . sigmacm ∗(gamma∗( cos ( the ta l abrad [ i ]))−
( s q r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) ∗
(gamma∗( cos ( the ta l abrad [ i ]))−
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( s q r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the l a b system . //

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

(180+ theta l ab [ i ] ) , l i s t [ i ] . thetacm , sigmalab [ i ] , l i s t [ i ] . sigmacm ) ;

//Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

else {
sigmalab [ i ]= l i s t [ i ] . sigmacm ∗(gamma∗( cos ( the ta l abrad [ i ]))−
( s q r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) ∗
(gamma∗( cos ( the ta l abrad [ i ]))−
( s q r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n ( the ta l abrad [ i ] ) , 2 . ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the l a b system . //

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

the ta l ab [ i ] , l i s t [ i ] . thetacm , sigmalab [ i ] , l i s t [ i ] . sigmacm ) ;

// Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

} // End of the ”For” loop . //

f c l o s e ( fp ) ;

return 0 ;

}

C.2 Routines in C language: Lab to C.M. converter

The following programs, in C language, were used in the data analysis in order to convert

the differential cross sections from the laboratory to the center of mass frame. The first code

was used for the data associated with the first solution while the second one for the data
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associated with the second solution. The programs follow the prescription of Ref. [176].

1st solution

# include<s t d i o . h>

# include<s t d l i b . h>

# include<math . h>

int main (void ){
int i ; // De f i n i t i on o f an i n t e g e r number requ i r ed in the ”For” loop .//

f loat b [ 1 6 ] , y [ 1 6 ] ,E [ 1 6 ] ;

double theta lab , sigmalab , the ta l abrad [ 1 6 ] , thetacmdeg [ 1 6 ] ;

double thetacm [ 1 6 ] , sigmacm [ 1 6 ] ,M1,M2,M3,M4,Q,ET, E1 ;

double A,B,C,D,M,m1,m2,m3,m4, e3 ;

double gamma,Ecm,VCM, u , tantheta [ 1 6 ] ;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗ Ioannina 2013 , ∗\n” ) ;
p r i n t f ( ”∗ Lab2CM conver t e r ∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ” Please ent e r the mass o f the p r o j e c t i l e in amu:\n” ) ;
s can f ( ”%l f ” , &m1) ; //Read the number and s t o r e i t in the v a r i a b l e m1.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the t a r g e t in amu:\n” ) ;
s can f ( ”%l f ” , &m2) ; //Read the number and s t o r e i t in the v a r i a b l e m2.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the l i g h t product in amu:\n” ) ;
s can f ( ”%l f ” , &m3) ; //Read the number and s t o r e i t in the v a r i a b l e m3.//
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p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the heavy product in amu:\n” ) ;
s can f ( ”%l f ” , &m4) ; //Read the number and s t o r e i t in the v a r i a b l e m4.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the energy o f the r e a c t i on in MeV: \n” ) ;
s can f ( ”%l f ” , &E1 ) ; //Read the number and s t o r e i t in the v a r i a b l e E1 .//

M1=931.478∗m1; //Convert the mass from amu to MeV/c ˆ2.//

M2=931.478∗m2; //Convert the mass from amu to MeV/c ˆ2.//

M3=931.478∗m3; //Convert the mass from amu to MeV/c ˆ2.//

M4=931.478∗m4; //Convert the mass from amu to MeV/c ˆ2.//

Q=M1+M2−M3−M4; // Ca l cu l a t e the Q−va lue o f the reac t i on .//

//Q=0.0;

ET=E1+Q;

M=(M1+M2)∗ (M3+M4) ;

A=(M1∗M4∗(E1/ET))/M;

B=(M1∗M3∗(E1/ET))/M;

C=(M2∗M3∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

D=(M2∗M4∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

struct data{// De f i n i t i on o f a s t r u c t u r e c a l l e d data .//

f loat the ta l ab ;

f loat sigmalab ;

} l i s t [ 1 6 ] ; //Each component o f the s t r u c t u r e i s a (1 x16 ) matrix .//

FILE ∗ fp ; // De f i n i t i on o f a po in te r .//

fp=fopen ( ” input . txt ” , ” r ” ) ; // Open the input f i l e and read i t .//

/∗
The input f i l e conta ins two columns correspond ing

to t h e t a l a b and s igma lab
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∗/

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ”%f \n” ,Q) ;

Ecm=(M2/(M1+M2))∗E1 ;

VCM=( sq r t (2∗M1∗E1 ) ) / (M1+M2) ;

u=sq r t ( ( 2 / (M3+M4) )∗ (M4/M3)∗ (Ecm+Q) ) ;

gamma=(VCM/u ) ;

p r i n t f ( ”thetaLAB thetaCM sigmaLAB sigmaCM\n” ) ;

for ( i =0; i <16; i++){
// De f i n i t i on o f a ”For” loop which i s repea ted 16 t imes .//

f s c a n f ( fp , ”%f %f ” , &l i s t [ i ] . theta lab , &l i s t [ i ] . s igmalab ) ;

//Scan the input f i l e and f i l l the matr ices .//

b [ i ]= l i s t [ i ] . t he ta l ab ;

// Store each va lue o f l i s t . t h e t a l a b matrix to the b matrix . //

y [ i ]=(3 .14159∗b [ i ] ) / ( 1 8 0 . ) ;
// Convert t h e t a l a b from degrees to rad ians .//

thetacm [ i ]=y [ i ]+ as in (gamma∗ s i n ( y [ i ] ) ) ;

thetacmdeg [ i ]=(180 .∗ thetacm [ i ] ) / ( 3 . 1 4 1 5 9 ) ;
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p r i n t f ( ”\n” ) ;
i f (b [ i ]<0){

sigmacm [ i ]= l i s t [ i ] . s igmalab / ( (gamma∗( cos ( y [ i ] ) )+
( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ∗ ( gamma∗( cos ( y [ i ] ) )+
( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the C.M. system .//

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

(180+b [ i ] ) , thetacmdeg [ i ] , l i s t [ i ] . sigmalab , sigmacm [ i ] ) ;

//Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

else {
sigmacm [ i ]= l i s t [ i ] . s igmalab / ( (gamma∗( cos ( y [ i ] ) )+
( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ∗ ( gamma∗( cos ( y [ i ] ) )+
( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the C.M. system . //

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

b [ i ] , thetacmdeg [ i ] , l i s t [ i ] . sigmalab , sigmacm [ i ] ) ;

//Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

}
// End of the ”For” loop . //

f c l o s e ( fp ) ;

return 0 ;

}

2nd solution
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# include<s t d i o . h>

# include<s t d l i b . h>

# include<math . h>

int main (void ){
int i ; // De f i n i t i on o f an i n t e g e r number requ i r ed in the ”For” loop . //

f loat b [ 1 6 ] , y [ 1 6 ] ,E [ 1 6 ] ;

double theta lab , sigmalab , the ta l abrad [ 1 6 ] , thetacmdeg [ 1 6 ] ;

double thetacm [ 1 6 ] , sigmacm [ 1 6 ] ,M1,M2,M3,M4,Q,ET, E1 ;

double A,B,C,D,M,m1,m2,m3,m4, e3 ;

double gamma,Ecm,VCM, u , tantheta [ 1 6 ] ;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗ Ioannina 2013 , ∗\n” ) ;
p r i n t f ( ”∗ Lab2CM conver t e r ∗\n” ) ;
p r i n t f ( ”∗ ∗\n” ) ;
p r i n t f ( ”∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ” Please ent e r the mass o f the p r o j e c t i l e in amu:\n” ) ;
s can f ( ”%l f ” , &m1) ; //Read the number and s t o r e i t in the v a r i a b l e m1.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the t a r g e t in amu:\n” ) ;
s can f ( ”%l f ” , &m2) ; //Read the number and s t o r e i t in the v a r i a b l e m2.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the l i g h t product in amu:\n” ) ;
s can f ( ”%l f ” , &m3) ; //Read the number and s t o r e i t in the v a r i a b l e m3.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the mass o f the heavy product in amu:\n” ) ;
s can f ( ”%l f ” , &m4) ; //Read the number and s t o r e i t in the v a r i a b l e m4.//

p r i n t f ( ”\n” ) ;
p r i n t f ( ” Please ent e r the energy o f the r e a c t i on in MeV: \n” ) ;
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s can f ( ”%l f ” , &E1 ) ; //Read the number and s t o r e i t in the v a r i a b l e E1 . //

M1=931.478∗m1; //Convert the mass from amu to MeV/c ˆ2.//

M2=931.478∗m2; //Convert the mass from amu to MeV/c ˆ2.//

M3=931.478∗m3; //Convert the mass from amu to MeV/c ˆ2.//

M4=931.478∗m4; //Convert the mass from amu to MeV/c ˆ2.//

Q=M1+M2−M3−M4; // Ca l cu l a t e the Q−va lue o f the reac t i on .//

// Q=0.0;

ET=E1+Q;

M=(M1+M2)∗ (M3+M4) ;

A=(M1∗M4∗(E1/ET))/M;

B=(M1∗M3∗(E1/ET))/M;

C=(M2∗M3∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

D=(M2∗M4∗(1+(M1∗Q/(M2∗ET) ) ) ) /M;

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

struct data{// De f i n i t i on o f a s t r u c t u r e c a l l e d data .//

f loat the ta l ab ;

f loat sigmalab ;

} l i s t [ 1 6 ] ;

// Each component o f the s t r u c t u r e i s a (1 x16 ) matrix . //

FILE ∗ fp ; // De f i n i t i on o f a po in te r .//

fp=fopen ( ” input . txt ” , ” r ” ) ;

/∗
Open the input f i l e and read i t .

This f i l e conta ins two columns correspond ing

to t h e t a l a b and s igma lab .

∗/

p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;
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p r i n t f ( ”\n” ) ;
p r i n t f ( ”\n” ) ;

p r i n t f ( ”%f \n” ,Q) ;

Ecm=(M2/(M1+M2))∗E1 ;

VCM=( sq r t (2∗M1∗E1 ) ) / (M1+M2) ;

u=sq r t ( ( 2 / (M3+M4) )∗ (M4/M3)∗ (Ecm+Q) ) ;

gamma=(VCM/u ) ;

p r i n t f ( ”thetaLAB thetaCM sigmaLAB sigmaCM\n” ) ;

for ( i =0; i <16; i++){
// De f i n i t i on o f a ”For” loop which i s repea ted 16 t imes . //

f s c a n f ( fp , ”%f %f ” , &l i s t [ i ] . theta lab , &l i s t [ i ] . s igmalab ) ;

// Scan the t x t f i l e and f i l l the matr ices . //

b [ i ]= l i s t [ i ] . t he ta l ab ;

// Store each va lue o f l i s t . t h e t a l a b matrix to the b matrix . //

y [ i ]=(3 .14159∗b [ i ] ) / ( 1 8 0 . ) ;
// Convert t h e t a l a b from degrees to rad ians . //

thetacm [ i ]=3.14159+y [ i ]− a s in (gamma∗ s i n (y [ i ] ) ) ;

thetacmdeg [ i ]=(180 .∗ thetacm [ i ] ) / ( 3 . 1 4 1 5 9 ) ;

p r i n t f ( ”\n” ) ;
i f (b [ i ]<0){

sigmacm [ i ]= l i s t [ i ] . s igmalab / ( (gamma∗( cos ( y [ i ]))−
( s q r t (1−(gamma∗gamma∗(pow( s i n ( y [ i ] ) , 2 . ) ) ) ) ) ) ∗ ( gamma∗( cos (y [ i ]))−
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( s q r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ;

// Evaluate the c ro s s s e c t i on in the C.M. system . //

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

(180+b [ i ] ) , thetacmdeg [ i ] , l i s t [ i ] . sigmalab , sigmacm [ i ] ) ;

//Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

else {
sigmacm [ i ]= l i s t [ i ] . s igmalab / ( (gamma∗( cos ( y [ i ]))−
( s q r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ∗ ( gamma∗( cos ( y [ i ]))−
( s q r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) /

( sq r t (1−(gamma∗gamma∗(pow( s i n (y [ i ] ) , 2 . ) ) ) ) ) ) ;

//Evaluate the c ro s s s e c t i on in the C.M. system . //

p r i n t f ( ”%4.2 f %15.2 f %15.4 f %15.6 f \n” ,

b [ i ] , thetacmdeg [ i ] , l i s t [ i ] . sigmalab , sigmacm [ i ] ) ;

//Print the t h e t a l a b , thetacm , s igma lab and sigmacm va l u e s r e s p e c t i v e l y .//

}

} // End of the ”For” loop . //

f c l o s e ( fp ) ;

return 0 ;

}
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Appendix D

Tabulated cross sections

D.1 Elastic scattering data

Table D.1: Elastic scattering differential cross sections in the center of mass frame

(dσ/dΩ)c.m. for
6Li + p at 29 MeV (4.83 MeV/u).

θc.m. (deg) (dσ/dΩ)c.m. (mb/sr) Error (mb/sr)

19.39 1188.40 94.12

23.03 759.73 61.75

26.73 497.18 41.75

30.50 342.40 29.81

34.37 338.13 29.13

38.35 299.95 25.98

42.47 296.25 25.45

46.77 227.92 20.13

51.30 208.59 18.48

56.12 169.15 15.34

61.35 110.06 10.68

65.94 90.29 9.00

77.67 83.13 6.42

86.35 66.45 5.43

88.05 63.03 5.18

89.65 60.51 5.01

91.25 64.86 5.33

131



92.90 55.25 4.61

94.55 62.72 5.17

96.15 58.56 4.87

97.85 60.81 5.02

102.80 64.89 5.34

104.45 65.68 5.39

106.15 51.68 4.35

107.85 56.43 4.70

114.61 49.15 3.71

116.70 54.22 4.51

118.55 58.20 4.80

120.45 42.73 3.65

122.35 49.13 4.13

123.53 49.70 3.84

124.25 60.16 4.94

126.25 53.49 4.42

129.33 55.53 3.01

134.15 51.33 2.81

138.38 54.09 2.96

142.20 56.94 3.13

145.73 56.59 3.12

149.03 58.52 3.26

152.15 55.16 3.07

155.13 56.32 4.34

158.00 61.06 4.73

160.77 67.75 5.28

163.47 54.12 4.31

Table D.2: Elastic scattering differential cross sections in the center of mass frame

(dσ/dΩ)c.m. for
6Li + p at 25 MeV (4.17 MeV/u).

θc.m. (deg) (dσ/dΩ)c.m. (mb/sr) Error (mb/sr)

19.39 1414.56 114.49

23.03 611.18 54.37
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26.73 357.24 34.94

30.50 220.32 23.95

34.37 156.11 18.27

38.35 148.55 17.05

42.47 111.05 13.40

46.77 126.17 14.11

51.30 115.65 12.85

56.12 96.23 10.97

61.35 95.16 10.60

67.17 66.76 8.00

73.97 66.23 7.50

78.55 54.05 5.16

82.35 48.03 4.73

86.15 43.13 4.36

89.95 44.04 4.45

93.75 44.59 4.50

97.55 51.91 5.08

101.35 49.20 4.82

105.25 46.99 4.66

109.25 47.48 4.71

113.25 48.21 4.75

117.45 48.46 4.73

121.85 41.91 4.21

126.35 38.31 3.89

123.53 53.39 5.07

129.33 44.86 3.14

134.15 43.23 3.18

138.38 43.72 3.30

142.20 46.72 3.56

145.73 47.28 3.68

149.03 48.00 3.78

152.15 48.95 4.19

155.13 42.51 5.84

158.00 44.55 7.14

160.77 59.62 9.98

133



163.47 51.37 11.14

167.67 43.53 7.10

Table D.3: Elastic scattering differential cross sections in the center of mass frame

(dσ/dΩ)c.m. for
6Li + p at 20 MeV (3.33 MeV/u).

θc.m. (deg) (dσ/dΩ)c.m. (mb/sr) Error (mb/sr)

19.39 2426.84 181.31

23.03 1039.97 79.47

26.73 585.96 46.10

30.50 337.03 27.70

34.37 265.53 22.32

38.35 199.14 17.26

42.47 172.11 15.10

46.77 135.76 12.22

51.30 142.14 12.54

56.12 129.00 11.39

61.35 109.32 9.75

67.17 92.31 8.29

73.97 75.33 6.80

82.55 73.82 5.62

87.35 73.95 5.64

92.05 76.68 5.84

96.75 67.01 5.14

101.55 55.88 4.30

106.45 55.09 4.25

111.45 51.69 4.00

116.60 48.69 3.77

122.00 39.59 3.10

128.54 43.32 3.16

134.08 41.98 2.94

138.38 40.45 2.40

142.20 39.60 2.40

145.73 41.15 2.53
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149.03 36.86 3.27

152.15 35.49 3.31

Table D.4: Elastic scattering differential cross sections in the center of mass frame

(dσ/dΩ)c.m. for
6Li + p at 16 MeV (2.67 MeV/u).

θc.m. (deg) (dσ/dΩ)c.m. (mb/sr) Error (mb/sr)

19.39 2965.09 222.35

23.03 1533.34 117.22

26.73 828.83 65.29

30.50 575.61 46.42

34.37 388.97 32.39

38.35 332.13 27.93

42.47 237.80 20.74

46.77 192.31 17.17

51.30 153.59 14.02

56.12 135.09 12.45

61.35 112.44 10.54

67.17 94.85 8.97

73.97 81.05 7.61

77.00 82.60 6.25

80.05 81.27 6.14

83.05 77.20 5.84

86.00 74.13 5.63

88.95 71.49 5.45

91.95 71.00 5.41

94.90 68.16 5.20

97.90 64.34 4.92

100.90 59.04 4.52

103.90 55.69 4.27

107.00 57.10 4.38

110.10 52.66 4.06

113.30 49.54 3.83

116.60 51.03 3.94
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119.90 43.51 3.38

123.40 40.92 3.19

127.00 38.36 2.30

130.80 35.07 2.74

134.53 37.81 3.14

138.79 35.54 3.04

142.20 36.57 2.92

145.73 37.97 3.03

149.03 37.23 2.98

D.2 Breakup data

Table D.5: Breakup differential cross sections in the center of mass frame (dσ/dΩ)c.m. for
6Li + p at 29 MeV (4.83 MeV/u).

θc.m. (deg) (dσ/dΩ)c.m. (mb/sr) Error (mb/sr)

15.0 27.18 9.18

19.0 24.33 5.31

22.0 24.70 4.89

24.0 32.79 6.07

27.5 30.88 5.40

31.5 31.43 5.45

34.0 33.64 5.37

37.5 30.78 5.22

40.5 32.97 5.24

44.0 33.49 5.30

48.0 33.12 5.31

51.5 30.23 4.93

56.0 31.39 4.97

60.0 26.89 4.54

64.0 40.00 6.77

70.0 39.38 6.79

76.5 38.03 7.20
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86.0 23.24 5.00

Table D.6: Breakup differential cross sections in the center of mass frame (dσ/dΩ)c.m. for
6Li + p at 25 MeV (4.17 MeV/u).

θc.m. (deg) (dσ/dΩ)c.m. (mb/sr) Error (mb/sr)

16.5 18.55 6.88

19.6 16.31 3.48

22.9 13.61 2.48

25.9 13.18 2.24

29.1 18.39 3.14

32.3 23.86 3.94

35.7 23.31 3.58

39.1 24.90 3.96

42.5 23.98 3.85

46.1 20.33 3.95

50.1 24.17 4.60

54.4 16.26 4.11

59.0 24.20 3.91

63.8 19.49 3.60

69.5 22.65 3.86

76.3 19.44 4.43

85.5 12.89 2.87
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