Hybrid stars and the stiffness of the nuclear equation of state in light of the HESS J1731-347 remnant¹

Laskos-Patkos P., Koliogiannis P.S., Moustakidis Ch.C.

Department of Theoretical Physics, Aristotle University of Thessaloniki

7th HINP Workshop, May 31-June 1, 2024

¹P. Laskos-Patkos, P.S. Koliogiannis, Ch.C. Moustakidis. Phys. Rev. D **109**, 063017, (2024)

- Neutron stars
- HESS J1731-347
- PREX-II experiment and the stiffness of the nuclear EOS
- Scope
- The hybrid EOS
- Results
- Conclusions

Neutron Stars: Unique Extraterrestrial Laboratories

- $M \sim 1.4~{
 m M}_{\odot}$
- $R \sim$ 10-15 km
- $ho_c > 2.8 imes 10^{14} \ {
 m gr} \ {
 m cm}^{-3}$
- $f \sim few$ Hz 700 Hz
- $B \sim 10^{12}$ Gauss

Figure: The layers of a neutron star^a

^acredit: NASA

Different nuclear models \rightarrow different equation of state \rightarrow different neutron star bulk properties.

Different nuclear models \rightarrow different equation of state \rightarrow different neutron star bulk properties.

In the past years:

- The observation of massive neutron stars exceeding $2M_{\odot}$ posed a significant challenge in the past decades \rightarrow stiff EOS behavior at high densities.
- Determination of the radii and tidal deformabilities of canonical neutron stars (LIGO/Virgo and NICER) → additional constraints at intermediate densities.

The central compact object (CCO) in the HESS J1731-347 remnant

The CCO in HESS J1731347 is particularly bright! Since 2007 it has been observed multiple times with different X-ray satellites.

• Analysis of the x-ray spectrum for the CCO in the HESS J1731-347 remnant² \rightarrow surprising small values for its mass and radius ($M = 0.77^{+0.20}_{-0.17} M_{\odot}$ and $R = 10.4^{+0.86}_{-0.78}$ km in 1σ).

²Nat. Astron. 6, 1444–1451 (2022)

³Phys. Rev. C 94, 052801(R) (2023)

⁴Prog. Theor. Exp. Phys. 041, D01 (2022)

The central compact object (CCO) in the HESS J1731-347 remnant

The CCO in HESS J1731347 is particularly bright! Since 2007 it has been observed multiple times with different X-ray satellites.

- Analysis of the x-ray spectrum for the CCO in the HESS J1731-347 remnant² \rightarrow surprising small values for its mass and radius ($M = 0.77^{+0.20}_{-0.17} M_{\odot}$ and $R = 10.4^{+0.86}_{-0.78}$ km in 1σ).
- The radius of low mass neutron stars is correlated with nuclear parameters at saturation^{3,4} → A soft equation of state at low density is favored → low symmetry slope L and/or low incompressibility K₀.

²Nat. Astron. 6, 1444–1451 (2022)

³Phys. Rev. C 94, 052801(R) (2023)

⁴Prog. Theor. Exp. Phys. 041, D01 (2022)

The Lead Radius Experiment (PREX), used the parity violating weak neutral interaction to probe the neutron distribution in 208 Pb (measuring its neutron skin thickness)

- The derived neutron skin thickness of Lead was found to be $\Delta R_{np} = 0.28 \pm 0.07$ (in 1σ)⁵.
- ΔR_{np} of heavy nuclei is strongly correlated with the slope parameter L → Large neutron star radii for low mass configurations⁶.

⁵Phys. Rev. Lett. 126, 172502 (2021)

⁶Phys. Rev. Lett. 126, 172503 (2021)

Scope

- The analysis of Doroshenko *et al.* indicated that the subsolar mass NS in the HESS J1731-347 remnant has a radius lower than 11.5 km⁷.
- Different analyses suggest that the PREX-II experiment would point larger neutron star radii above 13 km^{8,9}.

Figure: The layers of a neutron star (reproduced under CC By)⁹.

⁷Nat. Astron. 6, 1444-1451 (2022)

⁸Phys. Rev. Lett. 126, 172503 (2021)

⁹Prog. Theor. Exp. Phys. 041, D01 (2022)

In the present study we aim to access the possible reconciliation of the two aforementioned events by considering the possibility of a phase transition between hadronic and deconfined quark matter.

.

- Hadronic EOSs: Ska, SkI3, SkI5 → ∆R_{np} compatible with PREX-II and K₀ within the generally accepted range¹⁰.
- Quark EOS: vMIT Bag model¹¹

$$\mathcal{E}_Q = \sum_q \mathcal{E}_q + \frac{1}{2}G_v(n_u + n_d + n_s)^2 + B$$

• Phase transition via Maxwell construction

$$P^h = P^q, \quad \mu^h_B = \mu^q_B, \quad T^h = T^q.$$

¹⁰Phys. Rev. C 89, 044316 (2014)

¹¹MNRAS 485, 4873-4877 (2019)

We investigate two scenario with regards to parameter B:

- Constant (as in standard MIT bag models)
- Density dependant (the widely employed Gaussian parametrization)¹²

$$B(n) = B_{as} + (B_0 - B_{as}) \exp\left[-\beta \left(\frac{n}{n_0}\right)^2\right].$$

¹²Phys. Rev. C 66, 025802 (2002)

Case 1: Constant B

Figure: Mass-Radius diagrams for hybrid stars constructed with different hadronic models and the vMIT bag model with constant B.

э

(日)

Case 1: Constant B

Figure: Maximum mass as a function of the phase transition density (vMIT bag model with constant B).

Case 2: Density dependant B

Figure: Mass-Radius diagrams for hybrid stars constructed with different hadronic models and the vMIT bag model with density dependant *B*.

• • • • • • • • • • •

э

Case 2: Density dependant B

Figure: Maximum mass as a function of the phase transition density (vMIT bag model with density dependant B).

 \rightarrow The inclusion of rotational effects (709 Hz) allows for the explanation of PSR J0952-0607 for all possible transition density values (in the $G_{\nu} = 0.3$ fm² case).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In 2019 Ligo/Virgo reported a merger event involving a compact object of $\sim 2.6 M_\odot$. Can the constructed hybrid EOSs explain this event?

In 2019 Ligo/Virgo reported a merger event involving a compact object of $\sim 2.6 M_\odot$. Can the constructed hybrid EOSs explain this event?

Figure: M-R diagrams for the EOSs that predict the highest possible transition density (lowest maximum mass) + rotating stellar sequences.

 \rightarrow Yes but only the under the assumption of extreme rotation.

- The reconciliation of both HESS J1731-347 and PREX-II is possible given that a strong phase transition in the neutron star interior.
- A constant density value of *B* allows for the explanation of the aforementioned events but fails to support massive compact stars unless the transition occurs close to nuclear saturation.
- A density dependant value of *B* allows for the explanation of the aforementioned events and other important astronomical data (such as maximum mass constraints).
- The puzzling GW190814 can be explained as well but only if we consider Keplerian rotation.
- We aim to revisit this study using a relativistic *ab initio* model for the description of the low density hadronic phase.