

Reactions of weakly-bound nuclei at near-barrier energies

Chengjian Lin (cjlin@ciae.ac.cn)

China Institute of Atomic Energy, P.O. Box 275(10), Beijing 102413

7th International Workshop of the Hellenic Institute of Nuclear Physics under the auspices of HNPS on Nuclear Structure, Astrophysics and Reaction Dynamics 31 May – 1 June 2024, Ioannina, Greece

Contents

- 1. OMPs of weakly-bound nuclear systems ⁶He+²⁰⁹Bi, ⁶Li+²⁰⁸Pb
- 2. Breakups of weakly-bound nuclei
 - stable nuclei: ^{6,7}Li+²⁰⁹Bi
 - proton-rich nuclei: ¹⁷F+⁵⁸Ni, ⁸B+¹²⁰Sn
- 3. Summary and outlook

Optical Model Potential

♠ Optical Model is a successful model to explain the nuclear scattering and reaction, which resembles the case of light scattered by an opaque glass sphere.

Optical Model Potential (OMP):

U = V(r) + iW(r)attractive absorptive

★ phenomenological potential, independent on energy.

▲ A basic task in nuclear reaction study is to understand the nuclear interaction potential.

Cf: 1) S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. 73, 1352 (1949).
2) H. Feshbach, "The optical model and its justification", Ann. Rev. Nucl. Sci. 8, 49 (1958).

Tightly-bound Nuclei

Cf: 1) M. A. Nagarajan, C. C. Mahaux, and G. R. Satchler, Phys. Rev. Lett. 54, 1136 (1985).
2) C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Phys. A449, 354 (1986).
3) G. R. Satchler, Phys. Rep. 199, 147 (1991).

Weakly-bound Stable Nuclei

N. Keeley et al., Nucl. Phys. A **571**, 326 (1994).

N. Yu et al., JPG **371**, 075108 (2010).

31 May 2024

Halo Nuclei

OMPs are usually extracted from elastic scattering.

★ Impossible to extract effective OMPs at energy far below the barrier.

Cf: 1) E.F. Aguilera *et al.*, PRL **84**, 5058 (2000); PRC **63**, 061603R 2) A. R. Garcia *et al.*, Phys. Rev. C **76**, 067603 (2007).

OMPs from Transfers

⁶³Cu(⁷Li, <u>⁶He</u>)⁶⁴Zn: Phys. Rev. C **95**, 034616 (2017).

Experiment of ²⁰⁸Pb(⁷Li,⁶He)²⁰⁹Bi

Two experiments have been done at HI-13 tandem accelerator @ CIAE Exp1: $E_{\text{beam}} = 42.55, 37.55, 32.55, 28.55, 25.67 \text{ MeV} - \text{high energies}$ [2004.8] Exp2: $E_{\text{beam}} = 28.55, 25.67, 24.3, 21.2 \text{ MeV}$ -- low energies [2016.4] * Angular distributions of both elastic scattering and transfer were measured.

Data Analysis of ²⁰⁸Pb(⁷Li,⁶He)²⁰⁹Bi

DWBA & CRC analyses

31 May 2024

C.J. Lin @ HINPw7

OMPs of ⁶He+²⁰⁹Bi

- ★ OMPs of the ⁶He+²⁰⁹Bi system are determined precisely;
- ★ The decreasing trend in the imaginary part is observed, and the threshold energy is about 13.73 MeV (~0.68V_B);
- ★ The dispersion relation cannot describe the behavior between the real and imaginary part.

L. Yang, C.J. Lin^{*}, H.M. Jia et al., Phys. Rev. Lett. **119**, 042503 (2017); Phys. Rev. C **96**, 044615 (2017).

Experiment of ⁶Li+ ²⁰⁸Pb

Motivation: to extract the OMPs of ⁶Li+²⁰⁸Pb with high precisions, especially at sub-barrier energies.

Tow experiments have been done by the HI-13 tandem accelerator at CIAE.

1. ⁶Li+²⁰⁸Pb elastic scattering

64 Si-PIN detectors have been installed around the target, covering 20°-175° in step of 5°.

2. ²⁰⁷Pb(⁷Li,⁶Li)²⁰⁸Pb transfers

 $2~\Delta\text{E-E}_1\text{-}\text{E}_2$ telescopes have been installed, consisting of 40 μm DSSD, 300 μm and 1500 μm QSD.

Angular Distributions

31 May 2024

OMPs

31 May 2024

C.J. Lin @ HINPw7

Dispersion Relation

★ Dispersion relation results from causality, connecting real and imaginary part;
 ★ Any wave/particle should follow this rule when it passes through a media;
 ★ The classical dispersion relation is not applicable for ⁶He+²⁰⁹B and ⁶Li+²⁰⁸Pb.

Possible reasons:

- Causality → dispersion relation stable systems: causality ↔ analyticity
- Cauchy integration infinity poles (breakup) & off-axis (multi-process)
- Negative Index of Refraction causality based criteria must be used with care [Phys. Rev. Lett. 101, 167401 (2008).]
- Locality vs. non-locality equivalent local potential in Schrödinger equation

Contents

- 1. OMPs of weakly-bound nuclear systems ⁶He+²⁰⁹Bi, ⁶Li+²⁰⁸Pb
- 2. Breakups of weakly-bound nuclei
 stable nuclei: ^{6,7}Li+²⁰⁹Bi
 proton-rich nuclei: ¹⁷F+⁵⁸Ni, ⁸B+¹²⁰Sn
- 3. Summary and outlook

Breakup → Open Quantum System

★ Reactions with weakly-bound nuclei: easily breakup, and leading to continuum state

From sei-open quantum system to open quantum system

Strongly couplings of low-lying states to continuum states

Complex Processes

★ How to identify different reaction processes in a experiment?

Researches in NRG@CIAE

Overview of RIB Experiments

\star Complete-kinematics measurement ; **\star** Reactions induced by ⁷Be, ⁸B, ¹⁷F ...

EPJA 48, 65 (2012); PRC 97, 044618 (2018); EPJA 57, 143 (2021); PLB 813, 136045 (2021); NC 13, 7193 (2022) ...

31 May 2024

Detector Arrays

10 sets, 3 layers, $40\% 4\pi$

10 sets, 4 layers, 8% 4π

^{6,7}Li+²⁰⁹Bi: Spectra

31 May 2024

^{6,7}Li+²⁰⁹Bi: *Q*-value Spectra

Y.J. Yao et al., Nucl. Sci. Tech. 32, 14 (2021); Chin. Phys. C 45, 054104 (2021).

31 May 2024

^{6,7}Li+²⁰⁹Bi: Relative Energies

31 May 2024

^{6,7}Li+²⁰⁹Bi: Angular Correlations

31 May 2024

C.J. Lin @ HINPw7

^{6,7}Li+²⁰⁹Bi: Branch Ratios of Breakups

L. Yang et al., Fundamental Research, in press.

★ Rich information on breakups of ^{6,7}Li+²⁰⁹Bi was obtained experimentally, which requires a unified theory to comprehensively understand the dynamics and its influences.

¹⁷F+¹²C, ⁸⁹Y, ²⁰⁸Pb: Elastic Scattering

Eur. Phys. J. A 48, 65 (2012); Phys. Rev. C 97, 044618 (2018); Eur. Phys. J. A 57, 143 (2021).

¹⁷F+⁵⁸Ni: Nonelastic Breakup

Quasielastic, inclusive & exclusive breakup, total fusion have been obtained by the

complete-kinematics measurement for the first time.

Quasi-elastic: CDCC effects are not significant

 $\Box EBU - CDCC$

□NEB — IAV

□TBU — EBU+NEB

NEB is dominant

L. Yang, C. J. Lin, H. Yamaguchi et al., Phys. Lett. B 813, 136045 (2021).

¹⁷F+⁵⁸Ni: Cross Sections

★ Cross section of total fusion is enhanced below the barrier, mainly due to the couplings to the continuum states.

L. Yang, C. J. Lin, H. Yamaguchi *et al.*, Phys. Lett. B **813**, 136045 (2021).

⁸B+¹²⁰Sn: Elastic Breakup

- Couplings to the continuum cannot be neglected;
- The yield of ⁷Be is almost exhausted by breakup reaction;
- EBU is dominant, the contribution of NEB is ~18%.

L. Yang, C.J. Lin, H. Yamaguchi et al., Nat. Commun.13, 7193 (2022).

⁸B+¹²⁰Sn: Energy Correlations

★ Contributions of the 1st ex. state is ~ 4%, indicating prompt breakups are dominant.

L. Yang, C.J. Lin, H. Yamaguchi et al., Nat. Commun.13, 7193 (2022).

⁸B+¹²⁰Sn: Angular Correlations

Breakup of ⁸B occurs predominantly on the outgoing trajectory, close to the target.
 The continuum of ⁸B breakup may not significantly influence the complete fusion.

L. Yang, C.J. Lin, H. Yamaguchi et al., Nat. Commun.13, 7193 (2022).

In Progress: ⁷Be+²⁰⁹Bi,¹²⁰Sn

Summary and Outlook

- ★ Optical potentials of both ⁶He+²⁰⁹He and ⁶Li+²⁰⁸Pb show a phenomenon of abnormal "threshold anomaly", where the dispersion relation is NOT applicable. Further investigations are strongly desired to explore the underlying physics.
- ★ Rich information on breakups of ^{6,7}Li+²⁰⁹Bi has been obtained experimentally (e.g. energy & angular correlations), waiting for a fully understanding.
- ★ For ¹⁷F, NEB is dominant, and total fusion is enhanced below the barrier; for ⁸B, EBU is dominant, occurring promptly on the outgoing trajectory.
- ★ More system with exotic nuclei are required to understand the dynamics of open quantum systems.

Thank you for your attention!

Reactions with Weakly-bound Nuclei

Experimental Spectra

31 May 2024

C.J. Lin @ HINPw7

Detector Arrays

31 May 2024