# BREAKUP OF <sup>8</sup>B+<sup>90</sup>Zr AT THE SUB-BARRIER ENERGY OF 26.5MEV

<u>K. PALLI<sup>1,2</sup></u>, A. PAKOU<sup>1</sup>, A. M. MORO<sup>3,4</sup>, P. D. O'MALLEY<sup>5</sup>, L. ACOSTA<sup>6</sup>, A. SÁNTZEZ-BÉNITEZ<sup>7</sup>, G. SOULIOTIS<sup>2</sup>, E. F. AGUILERA<sup>8</sup>, E. ANDRADE<sup>6</sup>, D. GODOS<sup>6</sup>, O. SGOUROS<sup>9,10</sup>, V. SOUKERAS<sup>9,10</sup>, C. AGODI<sup>9</sup>, T. L. BAILEY<sup>5</sup>, D. W. BARDAYAN<sup>5</sup>, C. BOOMERSHINE<sup>5</sup>, M. BRODEUR<sup>5</sup>, F. CAPPUZZELLO<sup>9,10</sup>, S. CARAMICHAEL<sup>5</sup>, M. CAVALLARO<sup>9</sup>, S. DEDE<sup>5,11</sup>, J. A. DUEÑAS<sup>12</sup>, J. HENNING<sup>5</sup>, K. LEE<sup>5</sup>, W. S. PORTER<sup>5</sup>, F. RIVERO<sup>5</sup>, W. VON SEEGER<sup>5</sup>

<sup>1</sup> DEPARTMENT OF PHYSICS, THE UNIVERSITY OF IOANNINA, 45110 IOANNINA, GREECE

<sup>2</sup> DEPARTMENT OF CHEMISTRY, NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS, 15771 ATHENS, GREECE

<sup>3</sup> DEPARTAMENTO DE FÍSICA ATÓMICA, MOLECULAR Y NUCLEAR, UNIVERSIDAD DE SEVILLA, APARTADO 1065, E41080 SEVILLA, SPAIN

<sup>4</sup> INSTITUTO INTERUNIVERSITARIO CARLOS I DE FÍSICA TEÓRICA Y COMPUTATIONAL (IC1), APARTADO. 1065, E41080 SEVILLA, SPAIN

<sup>5</sup>DEPARTMENT OF PHYSICS AND ASTRONOMY, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556, USA

<sup>6</sup> INSTITUTO DE FÍSICA, UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, A.P. 20-364, MÉXICO CITY 01000, MÉXICO

<sup>7</sup>DEPARTAMENTO DE CIENCIAS INTEGRADAS Y CENTRO DE ESTUDIOS AVANZADOS EN FÍSICA, MATEMÁTICAS Y COMPUTATIÓN, UNIVERSIDAD DE HUELVA, 21071 HUELVA, SPAIN

<sup>8</sup> DEPARTAMENTO DE ACELERADORES Y ESTUDIO DE MATERIALES, INSTITUTO NACIONAL DE INVESTIGACIONES NUCLEARES, APARTADO POSTAL 18-1027, CODIGO POSTAL 11801, MEXICO CITY, DISTRITO FEDERAL, MEXICO

<sup>9</sup> INFN LABORATORI NAZIONALI DEL SUD, VIA SANTA SOFIA 62, 95125 CATANIA, ITALY

<sup>10</sup>DIPARTIMENTO DI FISICA E ASTRONOMIA "ETTORE MAJORANA", UNIVERSITA DI CATANIA, VIA SANTA SOFIA 64, 95125 CATANIA, ITALY

<sup>11</sup>CYCLOTRON INSTITUTE, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 77843, USA

<sup>12</sup>CENTRO DE ESTUDIOS AVANZADOS EN FÍSICA, MATEMÁTICAS Y COMPUTATIÓN, UNIVERSIDAD DE HUELVA, 21071 HUELVA, SPAIN

## OVERVIEW

- Motivation
- Experimental Details:
  - ➢ Facility
  - Beam Production
  - Detector Set-up
- Break-up Analysis Preliminary Results
- Summary Conclusions

## MOTIVATION

Interesting coupling effects below barrier

<sup>8</sup>B: - Weakly bound radioactive nucleus

- Proton halo structure
- Important for astrophysics



- Break-up threshold: 0.137 MeV



 $^{8}B \rightarrow ^{7}Be + p$ 

## MOTIVATION

Prediction of direct-to-total cross section ratios for weaklybound nuclei (A. Pakou et al., Eur. Phys. J.A (2015) 51:55):

- Heavy Targets: 100%
- Medium Mass Targets: 80%
- Light Targets: 70%

Medium Mass Target: <sup>90</sup>Zr

For  ${}^{8}B + {}^{90}Zr$  at sub barrier energies break up is expected to be the dominant reaction channel.



From: A. Pakou et al., Phys. Rev. C 102, 031601(R) (2020)

#### **MEASUREMENTS**

I. Break-up of  ${}^{8}B+{}^{90}Zr$  at 26.5 MeV

II. Elastic scattering of <sup>8</sup>B+<sup>90</sup>Zr at 26.5 MeV

Phys. Rev. C, accepted for publication

III. Elastic scattering of <sup>7</sup>Be+<sup>90</sup>Zr at 19.7, 21.3, 22.9, 26.6, and 27.5 MeV

Phys. Rev. C107,064613(2023)

### TRISOL FACILITY (P. D. O'MALLEY NIM P. S., S.A 1047, 167784 (2023))



7<sup>th</sup> Workshop of the Hellenic Institute of Nuclear Physics, 31<sup>st</sup> May – 1<sup>st</sup> June, Uol, Ioannina

## **BEAM PRODUCTION**

- In flight production of the beams.
- For <sup>8</sup>B Beam: 2p transfer reaction:

<sup>6</sup>Li(<sup>3</sup>He,n)<sup>8</sup>B; <sup>6</sup>Li(<sup>3</sup>He,d)<sup>7</sup>Be; <sup>6</sup>Li(<sup>3</sup>He,<sup>2</sup>p)<sup>7</sup>Li  $\rightarrow$  <sup>6</sup>Li@37 MeV

Beam Energies: <sup>8</sup>B@27.7 MeV

<sup>7</sup>Be@20.1 MeV

<sup>7</sup>Li@14.9 MeV

- Products separated by Time Of Flight (TOF) and  $\Delta E$ -E techniques.
- For <sup>7</sup>Be beam: <sup>6</sup>Li(d,n)<sup>7</sup>Be; <sup>6</sup>Li(d,p)<sup>7</sup>Li

#### BEAMLINE OF TRISOL



#### EXPERIMENTAL SET-UP

Scattering Chamber



Detectors + Target Ladder in the scattering chamber



# DETECTOR SET-UP

- Target thickness: I.95 mg/cm<sup>2</sup>
- Telescope dimensions: 5.4 x 5.4 cm
- 4 DSSSD (Double Sided Silicon Strip Detectors)
  - 3 with thickness 20  $\mu m$
  - I with thickness 15  $\mu m$
- 4 PAD Si detectors
  - Thickness 130 and 500  $\mu m$
- Angular range: Forward Telescopes: 20° 60°

Backward Telescopes: 110° - 150°

- Detectors placed at ~6 cm from the target in symmetrical positions.
- Beam Flux: ~1500 6000 pps



Detector Set-up

#### DATA



#### BREAKUP ANALYSIS : TOF Spectrum

- Separation of elastic <sup>7</sup>Be from break-up events is necessary
- Time Of Flight (TOF) technique
- Good separation between <sup>8</sup>B and <sup>7</sup>Be for part of the data.



### BREAKUP ANALYSIS: Preliminary results



7<sup>th</sup> Workshop of the Hellenic Institute of Nuclear Physics, 31<sup>st</sup> May – 1<sup>st</sup> June, Uol, Ioannina

## SUMMARY - CONCLUSIONS

#### Summary

- We measured breakup for <sup>8</sup>B+<sup>90</sup>Zr at the sub-barrier energy 26.5 MeV, at the *TriSol* facility of the University of Notre Dame.
- We have performed breakup analysis for part of our data using the Time of Flight (TOF) technique for the separation between the breakup products and the elastic <sup>7</sup>Be.
- We presented preliminary results for the break-up differential cross sections and probabilities compared with CDCC calculations by A. Moro. Experiment and theory are in fair agreement.
- The break up cross section seems to exhaust the total reaction cross section. One cannot obtain absolute conclusions due to the large statistical errors.

#### **Next Steps**

- Continuing of the break up analysis of the rest of the experimental data to improve statistics.
- Extraction the break-up cross section and the direct –to –total reaction cross section ratio.

## ACKNOWLEDGEMENTS

 Hellenic Foundation for Research & Innovation

4<sup>th</sup> Call for Scholarships for PhD Candidates Grand No 009194



• Fulbright Greece Foundation

Visiting Research Student Program



#### THANK YOU!!!











Εθνικόν και Καποδιστριακόν Πανεπιστήμιου Αθηνών ΙΔΡΥΘΕΝ ΤΟ 1837



