Vector boson model with broken proxy-SU(3) symmetry

Nikolay Minkov
 (Николай Минков)

Institute of Nuclear Research and Nuclear Energy
Bulgarian Academy of Sciences, Sofia, Bulgaria
Research Group on Complex Deformed Atomic Nuclei

HINPw7, Ioannina, 1 June 2024

Contents

(1) Vector boson model with broken $\operatorname{SU}(3)$ symmetry in heavy even-even nulei

- VBM Hamiltonian, basis and spectrum
- VBM description of ground and γ-bands. Favoured SU(3) multiplets
(2) Proxy SU(3) defined multiplets
(3) VBM calculation with Proxy SU(3) multiplets

4 Concluding remarks and perspective

The vector-bosons as elementary nuclear collective excitations [P. Raychev, R. Roussev, Sov. J. Nucl. Phys. 27, 792 (1978)]

Assumption:

Certain class of nuclear collective properties can be described by two types of elementary excitations created by the operators $\boldsymbol{\xi}^{+}, \boldsymbol{\eta}^{+}$
\rightarrow vectors defined in Fock space

$$
\begin{gathered}
\xi_{\nu}=(-1)^{\nu} \partial / \partial \xi_{-\nu}^{+} ; \quad \eta_{\nu}=(-1)^{\nu} \partial / \partial \eta_{-\nu}^{+}, \quad \nu=1,0,-1 \\
\xi^{\mu}=(-1)^{\mu} \xi_{-\mu} ; \quad \eta^{\mu}=(-1)^{\mu} \eta_{-\mu}
\end{gathered}
$$

\rightarrow closing boson commutation relations

$$
\left[\xi^{\mu}, \xi_{\nu}^{+}\right]=\left[\eta^{\mu}, \eta_{\nu}^{+}\right]=\delta_{\mu \nu}, \quad \mu, \nu=1,0,-1
$$

Vector-boson realization of SU(3) algebra

Angular momentum

$$
L_{m}=-\sqrt{2} \sum_{\mu, \nu} C_{1 \mu 1 \nu}^{1 m}\left(\xi_{\mu}^{+} \xi_{\nu}+\eta_{\mu}^{+} \eta_{\nu}\right), \quad m=0, \pm 1
$$

Quadrupole momentum

$$
Q_{k}=\sqrt{6} \sum_{\mu, \nu} C_{1 \mu 1 \nu}^{2 k}\left(\xi_{\mu}^{+} \xi_{\nu}+\eta_{\mu}^{+} \eta_{\nu}\right), \quad k=0, \pm 1, \pm 2
$$

\rightarrow closing SU(3) algebra

$$
\begin{aligned}
{\left[L_{m}, L_{n}\right] } & =-\sqrt{2} C_{1 m 1 n}^{1 m+n} L_{m+n} \\
{\left[L_{m}, Q_{n}\right] } & =\sqrt{6} C_{1 m 2 n}^{2 m+n} Q_{m+n} \\
{\left[Q_{m}, Q_{n}\right] } & =3 \sqrt{10} C_{2 m 2 n}^{1 m+n} L_{m+n}
\end{aligned}
$$

SU(3) irreducible representations (irreps) and Casimir operators
$U(n) \supset U(3) \supset S U(3)$
$U(3)$ representation $\left[f_{1}, f_{2}, f_{3}\right], \quad\left(f_{1} \geq f_{2} \geq f_{3}\right)$
$S U(3)$ irreps: $(\lambda, \mu), \quad \lambda=f_{1}-f_{2}, \mu=f_{2}-f_{3}$
$S U(3)$ invariants (Casimir operators):
$\hat{C}_{2} \equiv \sum_{i} \hat{F}_{i} \hat{F}_{i} \simeq \frac{1}{4} \hat{Q} \cdot \hat{Q}+\frac{3}{4} \hat{L}^{2}$
$\hat{C}_{3} \equiv \sum_{i j k} \hat{F}_{i} \hat{F}_{j} \hat{F}_{k}$
Eigenvalues (calc. in SU(3) matr. repr., Baird, Biedenharn, JMP 1963)
$\left\langle\hat{C}_{2}\right\rangle \sim \lambda^{2}+\mu^{2}+\lambda \mu+3(\lambda+\mu)$
$\left\langle\hat{C}_{3}\right\rangle \sim(\lambda-\mu)(\lambda+2 \mu+3)(2 \lambda+\mu+3)$
$\operatorname{dim}(\lambda, \mu)=1 / 2(\lambda+1)(\mu+1)(\lambda+\mu+2)$
$\boldsymbol{\xi}^{+}, \boldsymbol{\eta}^{+} \rightarrow \mathrm{O}(3)$ vectors transforming under two independent
$(\lambda, \mu)=(1,0)$ irreps

SU(3) breaking. VBM Hamiltonian and basis.

Rotation invariants reducing $S U(3)$ to $O(3)$:
$L^{2}=\sum_{m}(-1)^{m} L_{m} L_{-m}$
$L \cdot Q \cdot L=\sum_{M, m, m^{\prime}}(-1)^{M} C_{1 m 1 m^{\prime}}^{2 M} Q_{-M} L_{m} L_{m^{\prime}}$
$A^{+} A, \quad A^{+}=\left(\xi^{+}\right)^{2}\left(\boldsymbol{\eta}^{+}\right)^{2}-\left(\boldsymbol{\xi}^{+} \cdot \boldsymbol{\eta}^{+}\right)^{2}$
Vector-boson Hamiltonian with broken SU(3) symmetry
$H_{V B M}=g_{1} L^{2}+g_{2} L \cdot Q \cdot L+g_{3} A^{+} A$
$S U(3) \supset O(3) \supset O(2)$
Basis [V. Bargmann and M. Moshinsky, Nucl. Phys. 23, 177 (1961)]

$$
\left|\begin{array}{c}
(\lambda, \mu) \\
\alpha, L, M
\end{array}\right\rangle=P^{(\lambda, \mu, \alpha, L, M)}\left(\xi_{\nu}^{+}, \eta_{\nu}^{+}\right)|0\rangle, \quad \alpha-O(3) \text { multiplicity q.n. }
$$

VBM Hamiltonian, basis and spectrum

Diagonalization and spectrum [N.M. et al, PRC 552345 (1997)]

$$
\left.\begin{array}{c}
(\lambda, \mu) \\
\omega_{i}^{L}, L, L
\end{array}\right\rangle=\sum_{j=1}^{d_{L}} C_{i, j}^{L}\left|\begin{array}{c}
(\lambda, \mu) \\
\alpha_{j}, L, L
\end{array}\right\rangle
$$

$L:\left\{\alpha_{j}\right\}_{j=1 \div d_{L}}\left(\alpha_{j}<\alpha_{j+1}\right)$
$\max \left\{0, \frac{1}{2}(\mu-L)\right\} \leq \alpha \leq \min \left\{\frac{1}{2}(\mu-\beta), \frac{1}{2}(\lambda+\mu-L-\beta)\right\}$
$\beta= \begin{cases}0, & \lambda+\mu-L \text { even } \\ 1, & \lambda+\mu-L \text { odd }\end{cases}$
λ, μ even, $\lambda>\mu: \alpha=0,1,2, \ldots \mu / 2=\alpha_{\max }$
$(\lambda, \mu) \rightarrow\left\{\left(\alpha_{i}, L_{\alpha_{i}}\right)\right\} \rightarrow S U(3)$ multiplet
$K=\mu-2 \alpha, \quad N=\lambda+2 \mu \quad$ - number of vector bosons

Energy bands

$\alpha_{\text {max }}=\mu / 2: L=0^{+}, 2^{+}, 4^{+}, \ldots, L_{\text {max }}=\lambda \quad g s b$
$\alpha_{\text {max }}-1: L=2^{+}, 3^{+}, 4^{+}, \ldots, L_{\text {max }}=\lambda+2 \gamma$ band
$\alpha_{\max }-2: L=4^{+}, 5^{+}, 6^{+}, \ldots, L_{\max }=\lambda+4 K^{\pi}=4^{+}$band; \ldots
$\alpha=0: L=\mu, \mu+1, \mu+2, \ldots, L_{\max }=\lambda+\mu \quad K=\mu$ band

Transition rates

$$
\begin{aligned}
& B\left(E 2 ; \omega_{i}^{L} \rightarrow \omega_{i^{\prime}}^{L+k}\right)=\frac{1}{2 L+1}\left(\begin{array}{ccc}
L+k & 2 & L \\
-L & 0 & L
\end{array}\right)^{-2} \\
& \left.\times\left|\left\langle\begin{array}{c}
(\lambda, \mu) \\
\omega_{i^{\prime}}^{L+k}, L+k, L
\end{array}\right| Q_{0}\right| \begin{array}{c}
(\lambda, \mu) \\
\omega_{i}^{L}, L, L
\end{array}\right\rangle\left.\right|^{2} \\
& R_{1}(L)=\frac{B\left(E 2 ; L_{\gamma} \rightarrow L_{g}\right)}{B\left(E 2 ; L_{\gamma} \rightarrow(L-2)_{g}\right)}, \quad L \text { even } \\
& R_{2}(L)=\frac{B\left(E 2 ; L_{\gamma} \rightarrow(L+2)_{g}\right)}{B\left(E 2 ; L_{\gamma} \rightarrow L_{g}\right)}, \quad L \text { even } \\
& R_{3}(L)=\frac{B\left(E 2 ; L_{\gamma} \rightarrow(L+1)_{g}\right)}{B\left(E 2 ; L_{\gamma} \rightarrow(L-1)_{g}\right)}, \quad L \text { odd } \\
& R_{4}(L)=\frac{B\left(E 2 ; L_{g} \rightarrow(L-2)_{g}\right)}{B\left(E 2 ;(L-2)_{g} \rightarrow(L-4)_{g}\right)}, \quad L \text { odd }
\end{aligned}
$$

VBM Hamiltonian, basis and spectrum

VBM spectra for different SU(3) irreps: SU(3) multiplets

Vector boson model with broken SU(3) symmetry in heavy even-even nulei

VBM description of ground and γ-bands. Favoured SU(3) multiplets

Favored SU(3) multiplets

VBM description of ground and γ-bands. Favoured SU(3) multiplets

Favored SU(3) multiplets

VBM description of ground and γ-bands. Favoured SU(3) multiplets

Favored SU(3) multiplets [PRC 552345 (1997)])

MINKOV, DRENSKA, RAYCHEV, ROUSSEV, AND BONATSOS

TABLE II. The parameters of the fits of the energy levels and the transition ratios [Eqs. (20) and (21)] of the nuclei investigated are listed for the (λ, μ) multiplets which provide the best model descriptions. The Hamiltonian parameters g_{1}, g_{2}, and g_{3} [Eq. (5)] are given in keV . The quantities σ_{E} (in keV) and σ_{B} (dimensionless) represent the energy [Eq. (44)] and the transition [Eq. (45)] rms factors, respectively. The splitting ratios ΔE_{2} [Eq. (46), dimensionless] and the vector-boson numbers N [Eq. (9)] are also given.

Nucl	ΔE_{2}	λ, μ	σ_{E}	σ_{B}	g_{1}	g_{2}	g_{3}	N
${ }^{164} \mathrm{Dy}$	9.4	16,2	14.1	0.52	-1.159	-0.321	-0.590	20
${ }^{164} \mathrm{Er}$	8.4	18,2	8.1	0.14	3.625	-0.238	-0.513	22
${ }^{166} \mathrm{Er}$	8.8	16,2	5.8	0.47	2.942	-0.235	-0.572	20
${ }^{168} \mathrm{Er}$	9.3	20,2	3.2	0.28	4.000	-0.181	-0.401	24
${ }^{168} \mathrm{Yb}$	10.2	20,2	7.9	0.27	0.500	-0.271	-0.501	24
${ }^{172} \mathrm{Yb}$	17.6	$\geqslant 80,2$	6.8	0.12	9.875	-0.017	-0.052	84
${ }^{176} \mathrm{Hf}$	14.2	$\geqslant 70,2$	15.0	0.17	9.547	-0.030	-0.062	74
${ }^{178} \mathrm{Hf}$	11.6	34,2	7.0	0.86	8.322	-0.083	-0.213	38
${ }^{238} \mathrm{U}$	22.6	$\geqslant 60,2$	1.6	0.08	-37.697	-0.360	-0.098	64

$$
\Delta E_{2}=\left(E_{2_{2}^{+}}-E_{2_{1}^{+}}\right) / E_{2_{1}^{+}}
$$

Proxy SU(3) mapping (D. Bonatsos et al)

PHYSICAL REVIEW C 95, 064325 (2017)

Proxy SU(3) irreps (D. Bonatsos et al)

ANALYTIC PREDICTIONS FOR NUCLEAR SHAPES, ...

PHYSICAL REVIEW C 95, 064326 (2017)

TABLE II. Most leading $\operatorname{SU}(3)$ irreps $[34,35]$ for nuclei with protons in the $50-82$ shell and neutrons in the $82-126$ shell. Boldface numbers indicate nuclei with $R_{4 / 2}=E\left(4_{1}^{+}\right) / E\left(2_{1}^{+}\right) \geqslant 2.8$, while * denotes nuclei with $2.8>R_{4 / 2} \geqslant 2.5$, and ** labels a few nuclei with $R_{4 / 2}$ ratios slightly below 2.5 , shown for comparison, while no irreps are shown for any other nuclei with $R_{4 / 2}<2.5$. For the rest of the nuclei shown (using normal fonts and without any special signs attached) the $R_{4 / 2}$ ratios are still unknown [46]. Irreps corresponding to oblate shapes are underlined.

N	$N_{\text {val }}$	Z	Ba	Ce	Nd	Sm	Gd	Dy	Er	Yb	Hf	W	Os	Pt
		$Z_{\text {val }}$	56	58	60	62	64	66	68	70	72	74	76	78
		irrep	6	8	10	12	14	16	18	20	22	24	26	28
			$(18,0)$	$(18,4)$	$(20,4)$	$(24,0)$	$(20,6)$	$(18,8)$	$(18,6)$	$(20,0)$	$(12,8)$	$(6,12)$	$(2,12)$	$(0,8)$
88	6	$(24,0)$	$(42,0)^{*}$	$(42,4)^{*}$	$(44,4)^{*}$									
90	8	$(26,4)$	$(44,4)$	$(44,8)$	$(46,8)$	$(50,4)$	$(46,10)$	$(44,12)$	$(44,10)^{*}$	$(46,4) *$	$(38,12)^{*}$			
92	10	$(30,4)$	$(48,4)$	$(48,8)$	$(50,8)$	$(54,4)$	$(50,10)$	$(48,12)$	$(48,10)$	$(50,4)$	$(42,12)^{*}$			
94	12	$(36,0)$	$(54,0)$	$(54,4)$	$(56,4)$	$(60,0)$	$(56,6)$	$(54,8)$	(54,6)	$(56,0)$	$(48,8)$	$(42,12)$	$(38,12) *$	
96	14	$(34,6)$	$(52,6)$	$(52,10)$	$(54,10)$	$(58,6)$	$(54,12)$	$(52,14)$	(52,12)	$(54,6)$	$(46,14)$	$(40,18)$	$(36,18) *$	
98	16	$(34,8)$	$(52,8)$	$(52,12)$	$(54,12)$	$(58,8)$	$(54,14)$	(52,16)	(52,14)	(54,8)	$(46,16)$	$(40,20)$	$(36,20)^{*}$	
100	18	$(36,6)$	$(54,6)$	$(54,10)$	$(56,10)$	$(60,6)$	$(56,12)$	$(54,14)$	(54,12)	$(56,6)$	$(48,14)$	$(42,18)$	$(38,18)$	(36,14)*
102	20	$(40,0)$	$(58,0)$	$(58,4)$	$(60,4)$	$(64,0)$	$(60,6)$	$(58,8)$	$(58,6)$	(60,0)	(52.8)	$(46,12)$	$(42,12)$	$(40,8) *$
104	22	$(34,8)$	$(52,8)$	$(52,12)$	$(54,12)$	$(58,8)$	$(54,14)$	$(52,16)$	$(52,14)$	$(54,8)$	(46,16)	$(40,20)$	$(36,20)$	$(34,16) *$
106	24	$(30,12)$	$(48,12)$	$(48,16)$	$(50,16)$	$(54,12)$	$(50,18)$	$(48,20)$	$(48,18)$	$(50,12)$	42,20)	$(36,24)$	$(32,24)$	$(30,20) *$
108	26	$(28,12)$	$(46,12)$	$(46,16)$	$(48,16)$	$(52,12)$	$(48,18)$	$(46,20)$	$(46,18)$	$(48,12)$	$(40,20)$	$(34,24)$	$(30,24)$	$(28,20) *$
110	28	$(28,8)$	$(46,8)$	$(46,12)$	$(48,12)$	$(52,8)$	$(48,14)$	$(46,16)$	$(46,14)$	$(48,8)$	$(40,16)$	$(34,20)$	$(30,20)$	$(28,16)^{*}$
112	30	$(30,0)$	$(48,0)$	$(48,4)$	$(50,4)$	$(54,0)$	$(50,6)$	$(48,8)$	$(48,6)$	$(50,0)$	$(42,8)$	$(36,12)$	$(32,12)$	$(30,8)$ **
114	32	$(20,10)$	$(38,10)$	$(38,14)$	$(40,14)$	$(44,10)$	$(40,16)$	$(38,18)$	$(38,16)$	$(40,10)$	$(32,18)$	$(26,22)$	$(22,22)$	$(20,18) * *$
116	34	$(12,16)$	$(30,6)$	$(30,10)$	$(32,10)$	$(36,6)$	$(32,12)$	$(30,14)$	$(30,12)$	$(32,6)$	$(24,14)$	$\underline{(18,28) *}$	(14,28)	$\underline{(12,24) * *}$
118	36	$(6,18)$	$(24,18)$	$(24,22)$	$(26,22)$	$(30,18)$	$(26,24)$	$(24,16)$	$(24,24)$	$(26,18)$	$(18,26)$	$\underline{(12,30)}$	$\underline{(8,30) *}$	$\underline{(6,26) * *}$
120	38	$(2,16)$	$(20,16)$	$(20,20)$	$(22,20)$	$(26,16)$	$(22,22)$	$(20,24)$	$(20,22)$	$(22,16)$	(14,24)	$\underline{(8,28)}$	$\underline{(4,28) *}$	$\underline{(2,24) * *}$

Proxy SU(3) irreps [S. Sarantopoulou, D. Bonatsos et al, BJP 44, 417 (2017)]

TABLE II: Highest weight SU(3) irreps for nuclei with protons in the $82-126$ shell and neutrons in the 126 - 184 shell.

Favored and proxy $\mathrm{SU}(3)$ multiplets

Nucl	ΔE_{2}	λ, μ	σ_{E}	σ_{B}	g_{1}	g_{2}	g_{3}	N
${ }^{164} \mathrm{Dy}$	9.4	16,2	14.1	0.52	-1.159	-0.321	-0.590	20
	9.4	52,16	19.8	0.46	-18.558	-0.194	-0.052	84
${ }^{164} \mathrm{Er}$	8.4	18,2	8.1	0.14	3.625	-0.238	-0.513	22
	8.4	52,12	18.5	0.15	-8.805	-0.158	-0.059	76
${ }^{166} \mathrm{Er}$	8.8	16,2	5.8	0.47	2.942	-0.235	-0.572	20
	8.8	52,14	19.1	0.43	-11.081	-0.235	-0.153	80
${ }^{168} \mathrm{Er}$	9.3	20,2	3.2	0.28	4.000	-0.181	-0.401	24
	9.3	54,12	12.8	0.21	-7.799	-0.136	-0.053	78
${ }^{168} \mathrm{Yb}$	10.2	20,2	7.9	0.27	0.500	-0.271	-0.501	24
	10.2	54,8	10.9	0.24	-6.536	-0.151	-0.071	70
${ }^{172} \mathrm{Yb}$	17.6	$\geq 80,2$	6.8	0.12	9.875	-0.017	-0.052	84
	17.6	60,2	7.4	0.12	9.531	-0.024	-0.091	64
${ }^{176} \mathrm{Hf}$	14.2	$\geq 70,2$	15.0	0.17	9.547	-0.030	-0.062	74
	14.2	46,16	15.5	0.16	-28.637	-0.262	-0.106	78
${ }^{178} \mathrm{Hf}$	11.6	34,2	7.0	0.86	8.322	-0.083	-0.213	38
	11.6	42,20	7.6	0.86	-43.408	-0.354	-0.102	82
${ }^{238} \mathrm{U}$	22.6	$\geq 60,2$	1.7	0.08	-38.112	-0.363	-0.098	64
	22.6	90,4	1.7	0.08	-32.992	-0.215	-0.042	98

Concluding remarks

- The VBM algorithm is applicable with the use of proxy SU(3) defined multiplets.
- The proxy $\mathrm{SU}(3)$ symmetry acquires further physical significance in the structure of nuclear collective excited spectra (ground and γ bands, in particular)
- Possible application of the VBM with broken SU(3) symmetry for further detailed analysis and systematics of spectra and transition rates in wide ranges of heavy even-even deformed nuclei.

