Nuclear structure studies within the realistic shell-model framework

Angela Gargano

HINPw7

7th Workshop of the Hellenic Institute of Nuclear Physics on Nuclear Structure, Astrophysics and Reaction Dynamics

31/05 - 01/06/2024

L. Coraggio et al., Prog.Part.Nucl.Phys. 134 (2024) 104079

The quantitative role of 3-body force has well established in light nuclei, A>=12, with "exact" calculations

All considered 3N forces give similar results, but dramatically different compared to the calculations with only the NN potential

3N forces are necessary to give

- the 1⁺ 0⁺ ground-state spin inversion in ¹⁰B
- the correct splitting of the 1/2- 3/2- levels in ¹³C

No core shell-model results with AV8' NN potential + Tucson Melbourne 3N interactions

7th Hellenic Workshop, 31/05-1/06 2024

P. Navratil et al, Eur. Phys. J. A 25, 481 (2005)

Shell model and realistic NN interactions

$$H_{\text{leff}} = \sum_{a} \epsilon_a N_a - \frac{1}{4} \sum_{abcdJ} \langle ab; J \mid V_{\text{eff}} \mid cd; J \rangle (-1)^J [a_a^{\dagger} a_b^{\dagger}]^J \cdot [\tilde{a}_c \tilde{a}_d]^J,$$

defined in the model space for only valence nucleons

SM effective interactions derived from realistic NN potentials

 $V_{NN} \Rightarrow many - body theory \Rightarrow H_{eff}$

show some deficiencies in reproducing nuclear spectroscopy, especially when moving far from closed shells

phenomenological corrections to H_{eff}

INFN

A.Gargano

Monopole modified SM effective interactions

initiated in Eduardo Pasquini's Ph.D. thesis (1976) and pursued by the Strasbourg-Madrid group

H_{eff}'s from realistic NN potential need to be modified only in their monopole components

Monopole component

Centroid

 $H_{\rm mon} = \sum_{a\tau} \epsilon_{a\tau} N_{a\tau} + \frac{1}{2} \sum_{ab\tau\tau'} \frac{\bar{V}_{ab}^{\tau\tau'} N_{a\tau} (N_{b\tau'} - \delta_{ab} \delta_{\tau\tau'})}{\sum_J \hat{J}^2}$ $\bar{V}_{ab}^{\tau\tau'} = \frac{\sum_J \hat{J} \langle a\tau b\tau'; J \mid V_{\rm eff} \mid a\tau b\tau'; J \rangle}{\sum_J \hat{J}}$

Only centroids should be fitted to obtain results of a quality comparable with that provided by phenomenological interactions

Deficiencies in centroids are related to the bad saturation and shell formation properties of the NN interaction and can be traced back to the lack of 3N forces
$$\begin{split} \mathrm{ESPE}(a\tau) &= \epsilon_{a\tau} + \sum_{b\tau'} \bar{V}_{ab}^{\tau\tau'} n_b^{\tau'} \\ \mathrm{Responsible \ for \ the \ evolution} \\ \mathrm{of \ the \ SP \ energies} \end{split}$$

A. Poves, A. Zuker, Phys. Rep. 70 (1981) 235
E. Caurier et al, PRC C 50 (1994) 225
G. Martínez-Pinedo, et al, PRC 55, 1871997
A. Poves et al, NPA 694, 157 (2001)
E. Caurier et al, Rev. Mod. Phys. 77 (2005) 427
S. M. Lenzi et al, PRC 82 (2010) 054301

The case of ⁴⁹Ca

KB: Kuo-Brown interaction for the *fp* valence space KB', KB3: monopole modified interactions from KB

E. Caurier et al. Rev. Mod. Phys. 77 (2005) 427

(⁻¹⁰ Мөм) ш -15

-20

80

••• 1f_{7/2} **___** 2p_{3/2}

◆ ◆ 2p_{1/2} **→** 1f_{5/2}

70

70

80

3N forces and many-body systems

The explicit inclusion of 3NFs has historically been neglected in SM treatment due to

little knowledge of a mechanism providing many-body forces consistently with the nature of the NN interaction

difficulty in handling a 3N term in manybody systems whose solution requires formalisms that are computationally extremely demanding

7th Hellenic Workshop, 31/0

Chiral potentials derived in ChPT

 Nucleons interact via pion exchanges and short-range contact interactions. The long-range forces are ruled by the symmetries of QCD, while short-range forces - which are not resolved - are absorbed into contacts terms proportional to low-energy constants (LEC)

 Chiral potentials are organized in a systematic low-momentum expansion, where two- and many-body forces are generated on an equal footing

 Most interaction vertices that appear in the 3N force also occur in the NN force → consistency requires that the parameters LECs carried by these vertices have the same values for NN and 3N terms

3N chiral potential at N³LO

c_D and c_E may be fixed by an optimal over-all fit of the properties of light nuclei [see for instance P. Navrátil et al, PRL 99 (2007) 042501]

1 @ 8

Normal-ordered decomposition of the 3N component of H

Starting from a reference state and using the Wick theorem, the three-body component of the nuclear Hamiltonian can be re-arranged into a sum of zero-, one-, two-, and three-body terms \rightarrow only normal-ordered one- and two-body parts of 3N forces are included

First study explicitly including the 3NF in the derivation of the effective SM Hamiltonian

With an *NN* force-only, g.s. energies do not stop to decrease putting the dripline at N = 20, while 3N contributions correct the g.s behavior bringing a significant raise from N = 16 to 18 then provide the correct location of the drip line \leftrightarrow increase the d_{5/2} - d_{3/2} SO splitting

A.Gargano

Ground-state energies of oxygen isotopes measured from ¹⁶O

7th Hellenic Workshop, 31/05-1/06 2024

1 @ §

T. Otsuka et al, PRL 105, 032501 (2010)

NN and 3N forces within the ChPT framework at N³LO and at NNLO, respectively

[D. R. Entem, R. Machleidt, PRC 66 (2002) 014002; and c_D c_E from P. Navrátil et al, PRL 99 (2007)042501]

 H_{eff} within the framework of the MBPT (\hat{Q} -box folded diagram expansion) by including in the \hat{Q} -box one- and two-body Goldstone diagrams at third order in the NN potential and at first order in the 3N one

+ density-dependent two-body contributions to account for induced 3N forces which arise in systems with more than 2-valence nucleons

p-shell nuclei: B isotopes

Benchmark calculations: comparison of SM and ab initio NCSM results

1 @ §

Two-neutron separation energies and 2_1^+ excitation energies for calcium isotopes from N = 20 to 32

fp valence space

 H^{2N} only induced 3N forces

 H^{3N} genuine + induced 3N forces

 H^{Mon} monopole component of H^{3N} + multipole component of H^{2N}

Two-neutron separation energies and 2^+_1 excitation energies for nickel isotopes from N = 20 to 32

fp valence space

 H^{2N} only induced 3N forces H^{3N} genuine + induced 3N forces H^{Mon} monopole component of H^{3N} + multipole component of H^{2N}

Neutron and proton ESPE for nickel isotopes with and without 3N force

 H^{2N} only induced 3N forces H^{3N} genuine + induced 3N forces

Monopole matrix elements $\overline{V}_{f_{7/2b}}^{\tau\tau\prime}$ of the effective interactions with and without 3N force

- 3NF provides a repulsive contribution to all matrix elements, which makes the nn and pn matrix elements less attractive and pp ones more repulsive.
- The size of the contributions depends on the involved orbitals, ranging from few 10 to ~ 200 keV → substantial changes in the spacings between the ESPE's in correspondence of a sizable occupation of a specific orbital
- Changes produced by the 3N force are larger for non diagonal with respect to diagonal matrix elements, which leads to a larger gap between the f_{7/2} and the remaining orbitals

What is the specific mechanism behind the increase in the SO splitting produced by the chiral 3NF? Are there specific components of the 3NF leading to such an increasing?

Tensor decomposition of the chiral 3NF at N²LO

3NF can be schematically written as

A.Gargano

SPEs of the 0p3/2 and 0p1/2 orbitals

The SO splitting induced by the chiral 3NF is primarily governed by its rank-1 component arising from the 2 pion-exchange term

INFN

A.Gargano

Gap of the ESPEs between the $0p_{3/2}$ and $0p_{1/2}$ orbitals

Similarly to the SPEs, the primal impact comes from the rank-1 3NF of the 2-exchange process, accounting for almost enhancements by the whole 3NF. The effect of the rank-2 3NF (about 20%) is smaller yet appreciable.

Summary

* Genuine 3NFs provide a repulsive contribution, which, although partially counterbalanced by induced 3N forces is essential in determining the location of the neutron dripline and the evolution of the shell structure.

* 3NFs affect essentially the monopole component, then confirming the need to introduce monopole adjustments when using effective SM Hamiltonians derived from NN potentials.

* The size of the contributions depends on the involved orbitals, ranging from few 10 to ~ 200 keV \rightarrow substantial changes in the spacings between the ESPE's in correspondence of a sizable occupation of a specific orbital

*A crucial role in the SO splitting is played by the vector (rank-1) component arising from the the 1π +ct exchange term of the chiral 3NF

Luigi Coraggio (UNICampania & INFN-NA) Giovanni De Gregorio (UNICampania & INFN-NA) Nunzio Itaco (UNICampania & INFN-NA) Collaborators Riccardo Mancino (Charles University-Prague) Tokuro Fukui (Kyushu University- Fukuoka) Yuanzhuo Ma (South China Normal University) Furong Xu (Peking University)

Thanks for your attention