HINPw7: 7th International Workshop of the Hellenic Institute of Nuclear Physics under the auspices of HNPS on Nuclear Structure, Astrophysics and Reaction Dynamics

Nuclear shape / phase transitions in the N = 40, 60, 90 regions

Adam Prášek^a, Petr Alexa^a, Dennis Bonatsos^b, <u>Dimitrios Petrellis</u>^c, Gabriela Thiamová^d, Petr Veselý^c

^aDepartment of Physics, VŠB, Technical University Osrtava ^bInstitute of Nuclear and Particle Physics, N.C.S.R. "Demokritos"^c ^cNuclear Physics Institute, Czech Academy of Sciences ^dUniversite Grenoble 1, CNRS, LPSC, Institute Polytechnique de Grenoble, IN2P3

This work is dedicated to the memory of Adam Prášek

- Manifestations of structural change
- Shell model interpretation
- Microscopic self-consistent calculations
- Algebraic Collective Model calculations

Energy ratios R_{4/2}

 $R_{4/2} = \frac{E(4_1^+)}{E(2_1^+)}$

$$\frac{dR_{4/2}}{dN}(N) = R_{4/2}(N) - R_{4/2}(N-2)$$

B(E2) transition rates

 $B(E2; 2_1^+ \to 0_1^+)$

$$\frac{dB(E2;2_1^+ \to 0_1^+)}{dN}(N) = B(E2;2_1^+ \to 0_1^+)(N) - B(E2;2_1^+ \to 0_1^+)(N-2)$$

Energy ratios R_{2/0}

 $R_{2/0} = \frac{E(2_1^+)}{E(0_2^+)}$

Energy ratios R_{2/2}

 $R_{2/2} = \frac{E(2^+_{\gamma})}{E(2^+_1)}$

$$\frac{dR_{2/2}}{dN}(N) = R_{2/2}(N) - R_{2/2}(N-2)$$

A mechanism for the onset of deformation

monopole p-n interaction between spin-orbit partner orbitals $h_{11/2}$ proton and $h_{9/2}$ neutron lowers the $h_{11/2}$ proton level, eliminating the Z = 64 gap

P. Federman and S. Pittel, Phys. Lett. B 69, 385 (1977)
R. F. Casten, Nuclear Structure from a Simple Perspective (Oxford University Press, Oxford, 1990)
T. Otsuka, Physics 4, 258 (2022)

A mechanism for the onset of deformation

when N \ge 90 *effective* proton shell: Z = 50 - 82

=> new midshell at $Z \approx 64, 66$

= new position for the lowest-lying 2_{1}^{+}

= affects nuclei with Z = 60-66 (Nd, Sm, Gd, Dy)

fig. from R. F. Casten op.cit.

valence nucleons also important in proxy-SU(3) scheme \rightarrow talks by N. Minkov and D. Bonatsos

Microscopic calculations: SHF + BCS

SkyAx code: initial single particle states = Nilsson orbitals

P.-G. Reinhard, B. Schuetrumpf, and J. A. Maruhn, Comp. Phys. Comm. 258, 107603 (2021).

15 Skyrme parametrizations: {SV-bas, SV-tls, SV-mas07,... }

constrained calculations: (quadrupole) moment is fixed => Potential Energy Curves (PEC)

PEC for Se isotopes (N=34-46)

SV-bas

 $N = 40 \rightarrow {}^{74}Se$

SV-mas07

PEC for Zr isotopes (N=52-64)

SV-bas

 $N = 60 \rightarrow {}^{100}Zr$

SV-mas07

PECs for Mo isotopes (N=52-64)

SV-bas

 $N = 60 \rightarrow {}^{102}Mo$

SV-mas07

PECs for Nd isotopes (N=84-96)

SV-bas

 $N=90 \rightarrow {}^{150}Nd$

SV-mas07

Position Index

$$I(q,\pi) = \sum_{i_{(q,\pi)}} \left(0.5 - \left| v_i^2 - 0.5 \right| \right)$$
 v/2: occupation probability of state i

$$q = n, p \quad \text{and} \quad \pi = \pm$$
 what kind of levels are closest to the Fermi surface

$$\int_{u=0}^{u=0}^{u=0} \int_{u=0}^{u=0}^{u=0} \int_{u=0}^{u=0} \int_{u=$$

Algebraic Collective Model (ACM)

A computationally tractable version of the collective model of **Bohr** and **Mottelson**

basis w.f.: $SU(1,1) \times SO(5) \supset U(1) \times SO(3) \supset SO(2)$ => matrix compute radial angular β -w.f. 5-dim sph. har.

=> matrix elements computed analytically

- D. J. Rowe, T. A. Welsh, and M. A. Caprio, Phys. Rev. C 79, 054304 (2009). D. J. Rowe and J. L. Wood, Fundamentals of nuclear models (World Scientific, Singapore, 2010)
- T. A. Welsh and D. J. Rowe, Comput. Phys. Commun. 200, 220 (2016)

ACM calculations: spectra and B(E2)s

ACM Potential Energy Curves

¹⁵⁰Nd

ACM Potential Energy Curves

ACM Potential Energy Curves

In general, potentials resulting from ACM calculations show similarities with ones used in the Bohr Hamiltonian in the context of critical point symmetries, e.g.

- displaced infinite square well,
- infinite square well with a sloped wall,
- Davidson
- Kratzer

- Certain experimental quantities, such as energy ratios: R4/2,... and B(E2) transition rates serve as benchmarks for nuclear structure
- Valence **p-n** interactions driving force for structural change
- Microscopic calculations in the N = 40, 60, 90 regions show signs of a *first*-order phase transition with coexisting minima in the PECs
- Potentials resulting from the ACM calculations show similarities with ones used in the context of the Bohr Hamiltonian (critical point symmetries)

IOP PUBLISHING

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS

J. Phys. G: Nucl. Part. Phys. 34 (2007) R285–R320

doi:10.1088/0954-3899/34/7/R01

TOPICAL REVIEW

Quantum phase transitions and structural evolution in nuclei

R F Casten and E A McCutchan

Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520, USA

Figure 7. Energy surfaces for nuclei with successively larger numbers of valence nucleons plotted against the quadrupole deformation β (left) for a second-order phase transition and (middle) for a first-order phase transition. Right: the curve 'Crit.' repeated along with the square well ansatz that embodies the essential features of X(5) and E(5). The inset to the middle figure represents a set of shell model orbits *a* and *b*.

