

HINPw7 31/05 - 01/06/2024

Towards the next generation of detectors for $n-\gamma$ capture reactions at n_TOF (CERN)

A. Musumarra for the n_TOF collaboration

DFA University of Catania and INFN Sezione di Catania - Italy

HINPw7 31/05 - 01/06/2024

Outlook

- The *n_TOF* facility@CERN
- A new experimental approach for replacing the C_6D_6 for $n-\gamma$ capture reactions
- Moving further to *n*-*n* and *n*-*n'* elastic and inelastic scattering measurements
- Experimental results
- The new array
- Perspectives

The *n_TOF* facility at CERN – EAR1

n_TOF is a **spallation** neutron source based on **20 GeV/c protons** from the CERN PS hitting a **Pb block** (~360 neutrons per proton).

EAR1 Experimental Area at 185 m.

Features of the neutron beam:

- **EAR1 neutron flux** high resolution in energy ($\Delta E/E = 10^{-4}$) study resolutions wide energy range ($25 \text{ meV} < E_n < 1 \text{ GeV}$) measure fission from ther. to GeV
 - low **repetition** rate (< 0.8 Hz) - no wrap-around

EAR2 neutron flux

Higher fluence, by a factor of 25,(30 exp) relative to EAR1.

- The shorter flight path implies a factor of 10 smaller time-of-flight.

Global gain by a factor of 250 in the signal/background ratio for radioactive isotopes!

The gain in signal-to-background ratio in EAR2 allows to measure radioactive isotopes with half lives as low as a few years.

n_TOF Capture setup «old-style»

EAR1

Scintillation material

 $C_6 D_6$

EAR2

n_TOF Capture setup *S_TED*

¹⁰⁵ En [eV]

104

Counts/8.5 10¹² protons

10

10-4

10

10

Mo96 Empty Counts/bin/7E12 protons Empty Mo96 - Mo95 Mo94_thick 10 Mo_Dummy Mo94_thick Mo95 Mo_Dummy 10 10² 10³ 10⁻¹ 10⁻² 10⁻² 10⁻¹ 10² Neutron energy (eV) 10 R Mucciola et al. (The n_TOF Collaboration), November 2021

Measurement of 94,95,96 Mo(n, γ) relevant to Astrophysics and Nuclear Technology

Motivations for developing a new prototype

"Big" C₆D₆ Liquid scintillators

Large & segmented C_6D_6

Compact array of small C₆D₆

Solid organic scintillators Read-outs/Power supplies

Solid Higher density No Chemical hazard *n*/γ discrimination

Stilbene characteristics

Linear response in energy

Scintillation properties of solution-grown *trans*-stilbene single crystals Natalia Zaitseva^{a,*}, Andrew Glenn^a, Leslie Carman^a, H. Paul Martinez^a, Robert Hatarik^a,

CrossMark

Natalia Zaitseva ^{a,*}, Andrew Glenn ^a, Leslie Carman ^a, H. Paul Martinez ^a, Robert Hatarik ^a Helmut Klapper ^b, Stephen Payne ^a

Nuclear Inst. and Methods in Physics Research, A 1034 (2022) 166740

Gamma-response characterization of a solution-grown stilbene based detector assembly in the 59 keV–4.44 MeV energy range; an alternative low-resolution gamma spectrometer

Augusto Di Chicco ${}^{a,d},$ Alix Sardet ${}^{b,*},$ Michaël Petit c, Robert Jacqmin a, Vincent Gressier c, Brian Stout d

TaraT test run at NCSR Demokritos (Athens) June 2021

d-Stilbene 26 x 23 x 11 mm³

thanks to Natalia P. Zaitseva from LLNL

Signal parametrization $f(t) = P_0 + A * (\rho * (\exp(-\frac{t+t0}{\tau_{r_1}}) - \exp(-\frac{t+t0}{\tau_{d_1}})) + (1-\rho) * (\exp(-\frac{t+t0}{\tau_{r_2}}) - \exp(-\frac{t+t0}{\tau_{d_2}})))$

d-stil first prototype - June 2022

Sens-Tech PS1807 Ultra compact active base with DC-DC converter **no HV needed**

NTOF

First test @ EAR2 – June 2022

The holder was fitting with the S-TED frame

> main geometry unchanged for the test

relaxed mechanical constraints

Front window was aligned with respect to the S-**TED** modules

Same distance from the beam

Università di Catania

south

Preliminary analysis

We got the same *S/N* ratio of STED by using a much simpler device !

Second test during *Mo(n, y)* measurement in EAR2

The p-stil detectors - first array (n. 4 INRAD Scintinel[™] crystals)

1"x 1" 4 cylindrical **INRAD** p-stilbene detectors

LoI for stilbene detector development @ n_TOF – April 2023

Development of new solid-state total-energy detectors for neutron-capture measurements at CERN n_TOF

April 18, 2023

O. Aberle¹, V. Alcayne², M. Bacak¹, J. Balibrea-Correa³, N. Colonna⁴, D. Cano-Ott², A. Casanovas⁵, C. Domingo-Pardo³, O. Fjeld¹, F. Gunsing⁶ J. Lerendegui-Marco³, C. Lederer-Woods⁷, C. Massimi^{8,9}, E. Mendoza², A. Mengoni^{4,10}, A. Manna^{9,10}, A. Musumarra^{11,12}, N. Patronis¹, M.G. Pellegriti¹²

¹European Organization for Nuclear Research (CERN), Switzerland

²Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Spain

³Instituto de Física Corpuscular, CSIC - Universidad de Valencia, Spain

⁴Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy

⁵Universitat Politècnica de Catalunya, Spain

⁶CEA Irfu, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

⁷School of Physics and Astronomy, University of Edinburgh, United Kingdom

⁸Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Italy

⁹Dipartimento di Fisica e Astronomia, Università di Bologna, Italy

¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy

¹¹Dipartimento di Fisica e Astronomia, Università di Catania, Italy

¹²Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy

Spokespersons:

Javier Balibrea-Correa javier.balibrea@ific.uv.es Agatino Musumarra musumarra@lns.infn.it **Technical coordinator:** O. Aberle Oliver.Aberle@cern.ch

CERN-INTC-2023-034 / INTC-I-254

Università di Catania

EAR2 May 2023 set-up

Detectors' pulse shape analysis (only %)

Average pulse shape calculated by ⁸⁸Y calibration source

Deposited energy calibration

¹⁹⁷Au(n,y) saturated resonance

¹⁹⁷Au(n, γ) saturated resonance to establish relative efficiency between detectors

Excitation functions on ¹²C @ EAR2(1-10 MeV)

for n+12C and empty frame at two different laboratory angles, 90° and 135°

Analysis conditions:

Beam high intensity pulses 400 keV threshold to the deposited energy *PSD condition for neutron selection: amp/area<0.074**

LoI for elastic and inelastic measurements EAR1@n_TOF – April 2024

Informazioni	Discussioni (0)	File
	S	cientific Committee Paper
Report num	nber	CERN-INTC-2024-028 ; INTC-I-274
Title		Response of stilbene scintillator to (n,n) and (n,n') reaction channel in TOF experiments
Project Manager/Technical Coordinator		Pellegriti, Maria Grazia; Sahoo, Rudra Narayan
Author(s)		Castelluccio, DM (ENEA-Bologna and INFN-Bologna, Italy); Console Camprini, P. EVEA Bologna and INFN-P. Jouna, Haly); Diakaki, M (National Technical University of Athens, Greece); Elme, Z (University of Ioannina, Greece); Massimi, C (University of Bologna and NCN Bologna, Italy); Mistri Carco, M (University of Bari and INFN-Bari, Italy); Mucciola, R (INFN-Bari, Italy); ; Musumarra, A (University of Catania and INFN-Catania, Italy); Patronis M (University of Lanrada, Freece); Pellegriti, MG (INFN-Catania, Italy) <i>Visualizza tutti i 11 autori</i>
Corporate a	author(s)	CERN. Geneva. ISOLDE and neutron Time-of-Flight Experiments To nmittee ; INTC
Series		(Letter of Intent)
Note		Requested protons: 6*10^17 protons on target
Submitted	by	maria.grazia.pellegriti@cern.ch.onv@Apr.2024
Subject cat	egory	Detectors and Experimental Technologues
Email conta	act(s) : mariagr	razia.pellegriz SN min.t ; Rudrat Gran Schoo@bo.infn.it ; Oliver.Aberle@cern.ch
Record crea	to 2024-04-08	modificato l'ultima volta il 2024-04-08
		Record simili

New stilbene crystals from PROTEUS: first tests October 2023

Analysis by Dimitris Papanikolaou

1"x 1" cylindrical **INRAD** p-stilbene detector 1"x 1" cylindrical **PROTEUS** p-stilbene detector

Carbon fiber housing Aluminium cover in the front window

Università di Catania

NTOF

Pulse Shape Discrimination by Am-Be n- γ source (600 V HV)

S FOM=

 $\delta_{neutron} + \delta_{gamma}$

Principal Component Analysis (PCA) by five signal parameters

Time resolution by 60-Co $\gamma - \gamma$ coincidence (*preliminary*)

Time Resolution (ns)					
	PROTEUS - INRAD	INRAD - INRAD			
Derivative	0.88 ± 0.03	1.15 ± 0.05			
Leading Edge	0.78 ± 0.03	1.12 ± 0.05			
CDF	0.76 ± 0.03	1.15 ± 0.04			

By D. Papanikolaou

Fast counting in EAR 2 needs some new development....

New ultrafast DAQ by ToT SPIN-OFF of POLIMI

ToT by 137-Cs gamma source

PSTIL-1 (INRAD-STILBENE)

Fast scintillator crystal with dedicated PM

EJ-232 plastic scintillator is intended for very fast timing applications or when very high pulse pair resolution is required. Due to the small emission wavelength, the optical mean free path of this scintillator is approximately 10 cm. Therefore, to achieve the best light collection and to optimize the timing performance, EJ-232 should be used in a small size with the largest scintillator dimension less than 10 cm to minimize photon scattering effects. The use of light guides is best avoided.

EJ-232Q plastic scintillator is a quenched variant of EJ-232 specifically formulated for ultra-fast counting applications. The introduction of small amounts of benzophenone to EJ-232 significantly shortens the timing properties for purposes of achieving very high counting rates or improved coincidence timing. The quenching does not affect the emission spectrum but does reduce the scintillation efficiency (see table below). While it is recommended to keep the scintillator size and shape small in order to achieve the best timing performance, it is not recommended to use EJ-232Q in thin films (thicknesses \leq 3 mm) due to the vapor pressure of benzophenone.

RRORERTIES	EL 020	EJ-232Q (% BENZOPHENONE)				
PROPERTIES	EJ-232	0.5	1.0	2.0	3.0	5.0
Light Output (% Anthracene)	55	19	11	5	4	3
Scintillation Efficiency (photons/1 MeV e)	8,400	2,900	1,700	770	610	460
Wavelength of Maximum Emission (nm)	370	370	370	370	370	370
Rise Time (ps)	350	110	105	100	100	100
Decay Time (ps)	1,600	700	700	700	700	700
Pulse Width, FWHM (ps)	1,300	360	290	260	240	220
H Atoms per cm ³ (×10 ²²)	5.13	5.12	5.12	5.12	5.12	5.12
C Atoms per cm ³ (×10 ²²)	4.66	4.66	4.66	4.66	4.66	4.66
Electrons per cm ³ (×10 ²³)	3.30	3.38	3.38	3.38	3.38	3.38
Density (g/cm ³)	1.023	1.023	1.023	1.023	1.023	1.023

Try to achieve

2-3 ns signal length

100 MHz max rate

HAMAMATSU

PHOTON IS OUR BUSINESS

HIGH-SPEED RESPONSE PMT MODULES FOR UNDERWATER OPTICAL COMMUNICATIONS

Parameter

Photomultiplier already at INFN-CT scintillator

Unit

H14600 / H14601 series

H14601-200

Suffix			-100, -103	-200	-01, -04	-20	_
Inp	ut voltage			+4.51	0 +5.5	V	
Ma	x. input voltage			5	.5	V	
Ма	x. input current *1	put current *1 3.5			mA		
Ма	x. average output signal current *2	erage output signal current *2 100				μA	
Ма	x. control voltage			+1.0 (Input im	ut impedance 1 MΩ)		
Recommended control voltage				O E to 1 0 (loou	impodopoo 1 MO)	V	
adjustment range				+0.5 t0 +1.0 (inpu	impedance i Msz)		v
Effe	ective area			¢8			mm
Peak sensitivity wavelength			400	400	400	630	nm
	Luminous consitivity	Min.	80	100	100	350	μA/lm
Cathode	Luminous sensitivity	Тур.	105	135	200	500	
	Blue sensitivity index (Blue filter)	Тур.	13.5	15.5			_
	Red/White ratio	Тур.	_	—	0.25	0.45	_
	Radiant sensitivity *3	Тур.	110	130	77	78	mA/W
	Luminous consitivity *2	Min.	30	40	40	140	A/Im
le	Luminous sensitivity -	-100, -103 -200 -01, -0 +4.5 to +5.5 .	200	500	A/IM		
õ	Radiant sensitivity *2*3	Тур.	1.1 × 10 ⁵	1.3 × 10 ⁵	7.7 × 10 ⁴	7.8 × 10 ⁴	A/W
Ā	Dark ourrent *2*4	Тур.	0.5	0.5	1	10	
	Dark current	Max.	5	5	10	100	
Ris	e time *2	Тур.		0	.6		ns
Ripple noise *2*5 (peak to peak) Ma			0.2				mV
Settling time *6 M			10				S
Operating ambient temperature *7			+5 to +50				°C
Storage temperature *7			-20 to +50				°C
Weight			32 (H14600 series), 40 (H14601 series)				a

TIME (1 ns/div.)

Conclusions and perspectives

- A new array of Stilbene detectors has been characterized at CERN and INFN-CT
- The results look promising, facing the new demanding application before and after LS3@CERN
- The new setup shows very good performances for *n*-capture reactions
- Implementing $n-\gamma$ discrimination makes the array suitable also for measuring n-n and $n-\gamma$ coincidences.
- A new d-Stibene array by LLNL is in progress (Spanish collaborators)

