Multinucleon Transfer in Peripheral Collisions below the Fermi energy. Recent experiment on 11.5 MeV/nucleon ⁴⁸Ti+⁴⁸Ti

Georgios A. Souliotis

Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece

HINPw7 Workshop University of Ioannina 31 May-1 June, 2024

Outline

- Experimental work at Texas A&M. MARS separator (2-stage): ⁴⁰Ar,⁸⁶Kr + Ni,Sn
- Experimental work at Texas A&M. BigSol Line Separator: ⁶⁴Ni+⁶⁴Ni, ¹²⁴Sn, ²⁰⁸Pb
- Experimental work at: LNS/INFN Italy with MAGNEX: ⁷⁰Zn+⁶⁴Ni
- Recent work with the MARS Separator (3-stage) : ⁴⁸Ti+⁴⁸Ti
- Reaction/Dynamics simulations with DIT and CoMD followed by GEMINI
- Detailed filtering for the spectrometer acceptance

Conclusions and future steps

Cyclotron Institute at Texas A&M University

MARS Recoil Separator for Heavy Rare Isotope Studies*

Reactions Studied with MARS

```
<sup>86</sup>Kr (15MeV/u) + <sup>64</sup>Ni, <sup>58</sup>Ni (4^{\circ} and 7^{\circ} data) [1,2,3]
<sup>86</sup>Kr (15MeV/u) + <sup>124</sup>Sn, <sup>112</sup>Sn (4^{\circ} and 7^{\circ} data) [1,2,3]
```

⁸⁶Kr (25MeV/u) + ⁶⁴Ni (**2**° and **4**° data) [3,4,5] ⁸⁶Kr (25MeV/u) + ¹²⁴Sn, ¹¹²Sn (**4**° data) [3,4,5]

```
<sup>40</sup>Ar (15MeV/u) + <sup>64</sup>Ni, <sup>58</sup>Ni (4° data) [6,7]
```

[[1] G.A. Souliotis, M. Veselsky et al., *Phys. Rev. C*, 84, 064607 (2011)
[2] P. Fountas, G.A. Souliotis et al., *Phys. Rev. C*, 90, 064613 (2014)
[3] G.A. Souliotis, M. Veselsky et al., *Phys. Lett. B* 543, 163 (2002)
[4] G.A. Souliotis, M. Veselsky et al., *Phys. Rev. Lett.* 91, 022701 (2003)
[5] O. Fasoula, G.A. Souliotis et al, arXiv: 2103.10688 (nucl-ex 2021)

[6] A. Papageorgiou, G.A. Souliotis et al., *J. Phys. G* 45, 095105 (2018)
[7] K. Palli, G.A. Souliotis et al., *Eur. Phys. J. WoC* 252, 07002 (2021)

15 MeV/nucleon ⁸⁶Kr + ⁶⁴Ni / ¹²⁴Sn – Inelastic Channel

Angular and p/A Distributions

- Exp. Data
- DIT/Gemini
- CoMD/Gemini
- \star Experimental points 4° and 7°

DIT Quasiprojectile (QP) Analysis • QP - 0N • QP - 1N • QP - 2N

*Olga. Fasoula, G. A. Souliotis, et al., in preparation

BigSol Separator and Setup (2003-2009)

MAGNEX Spectrometer at LNS

S800 Cyclotron Beam: ⁷⁰Zn (15 MeV/nucleon) ⁶⁴Ni target 1.18 mg/cm² $\theta_{MAGNEX} = 9^{\circ}$

F. Cappuzzello, C. Agodi, D. Carbone and M. Cavallaro, Eur. Phys. J. A., 52:167 (2016)

G.A.: Souliotis, S. Koulouris, F. Cappuzzello, D. Carbone, A. Pakou et al., Nucl. Instrum. Methods A 1031 (2022) 166588

Stergios. Koulouris, G.A. Souliotis F. Cappuzzello, D. Carbone, A. Pakou et al., Phys. Rev. C 108, 044612 (2023)

MARS Recoil Separator (standard 3-stage). ⁴⁸Ti beam from the K150 Cyclotron

Experimental Details for the ⁴⁸**Ti+**⁴⁸**Ti experiment**

Reconstructed: Fragment Yield Distribution Y(Z, A, p/A)

ΔE, Er Calibrations

Energy loss ΔE Residual Energy Er

Total Energy

Z and Q separation and gating. Mass identification

Z reconstruction Q reconstruction

Correlated Z and Q with the Y position at the tail of MARS Set Z and Q gates !

Yield distributions: Data, Calculations: 48Ti (11.1 MeV/u) + ⁴⁸Ti

p/A distribution: 48Ti (11.5 MeV/u) + ⁴⁸Ti

- ⁴⁸Ti+⁴⁸Ti(11.5 MeV/u) exp. data
- ---- CoMD/GEM (total)
 - CoMD/GEM with angular + BRHO filter
- --- DT/GEM (total)
- —— DIT/GEM with angular + BRHO filter

Angular acceptance: 0°-2.7°

Beam: p/A = 144. MeV/c

p/A distribution: 48Ti (11.5 MeV/u) + ⁴⁸Ti

p/A (MeV/c

• ⁴⁸Ti+⁴⁸Ti(11.5 MeV/u) exp. data

---- CoMD/GEM (total)

----- CoMD/GEM with angular + BRHO filter

----DT/GEM (total)

Angular acceptance: 0°-2.7°

Beam: p/A = 144. MeV/c

The filled points from the calculations are to the measured data (black filled points).

p/A distribution: 48Ti (11.5 MeV/u) + ⁴⁸Ti

- ⁴⁸Ti+⁴⁸Ti(11.5 MeV/u) exp. data
- ---- CoMD/GEM (total)
- --- CoMD/GEM with angular + BRHO filter
- ---- DT/GEM (total)
- —— DIT/GEM with angular + BRHO filter

Angular acceptance: 0°-2.7°

Beam: p/A = 144. MeV/c

Summary - Discussion

Systematic studies of peripheral collisions with a variety of beams, targets and spectrometers at energies below the Fermi energy.

Recent measurements and analysis of ⁴⁸Ti(11.5MeV/u) + ⁴⁸Ti

Extraction of cross sections, momentum p/A distributions and angular distributions. Binary kinematical analysis.

Detailed calculations and analysis with DIT and CoMD models. Details of the mechanisms to be disentangled:

- Nucleon exchange
- Charge exchange
- pair transfer (nn,pp)
- Cluster transfer (mainly alpha)

Pathways to neutron rich isotopes

HINPw7 : 31 May - 1 June 2024 :

Collaborations and Acknowledgments

- Professor Sherry Yennello and her group Texas A&M University, Cyclotron Institute
- Professor Aldo Bonasera and his group Texas A&M University, Cyclotron Institute
- Professor Athena Pakou and her group University of Ioannina, Ioannina, Greece
- Professor Francesco Cappuzzello and his group University of Catania and LNS/INFN, Catania, Italy

University of Athens Nuclear Chemistry Group Members:

- Olga Fasoula (PhD Candidate)
- Stergios Koulouris (PhD Candidate)
- Chryssi Gianitsa (MSc candidate)
- Konstantinos Gatzogias (MSc Candidate)
- Eirini Kontogianni (MSc candidate)
 - Eleftheria Travlou (senior undergraduate student)
 - Nikos Korakis (senior undergraduate student)

Thank you !

Momentum per nucleon distributions of ejectiles from nucleon pickup channels from the reaction of ⁷⁰Zn (15 MeV/nucleon) + ⁶⁴Ni.

S. Koulouris, G.A. Souliotis F. Cappuzzello, D. Carbone, A. Pakou et al., Phys. Rev. C 108, 044612 (2023), doi: 10.1103/PhysRevC.108.044612

ΔE, Er Calibrations

Energy loss ΔE

Residual Energy Er

Total Energy

Calibrations

Extracted physical quantities :

Velocity (TOF) from Energy loss and Total Energy

Extracted physical quantities :

Velocity (TOF) from Energy loss and Total Energy

Calibrations

Atomic Number Z

 $Z \sim U \Delta E^{1/2}$

Y Calibration

Z=24

Run 35

Mass ID