Multinucleon Transfer Studies of the ${ }^{64} \mathrm{Ni}$ System

S. Koulouris ${ }^{1}$, G. A. Souliotis ${ }^{1}$, F. Cappuzzello ${ }^{2,3}$, D. Carbone ${ }^{3}$, A. Pakou ${ }^{4}$, C. Agodi ${ }^{3}$, G. Brischetto ${ }^{2,3}$, S. Calabrese 3, M. Cavallaro ${ }^{3}$, I. Ciraldo ${ }^{2,3}$, O. Fasoula ${ }^{1}$, O. Sgouros ${ }^{3}$, V. Soukeras ${ }^{3}$, A. Spatafora ${ }^{2,3}$, D. Torresi ${ }^{3}$, M. Veselsky ${ }^{5}$
${ }^{1}$ Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
${ }^{2}$ Dipartimento di Fisica e Astronomia "Ettore Majorana", Universita di Catania, Italy
${ }^{3}$ Laboratori Nazionali del Sud, INFN, Catania, Italy
${ }^{4}$ Department of Physics and HINP, The University of Ioannina, Ioannina, Greece
${ }^{5}$ Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic

Outline of the Talk

- Introduction
- Experimental setup
- Particle Identification Procedure
- Presentation of experimental results - Comparison with theoretical calculations
- Summary and next steps

Motivation of present work

- Production and identification of neutron-rich nuclides \longrightarrow One of the main concurrent challenges of the nuclear community
- Systematic studies of production of neutron-rich nuclides far from the line of beta stability in peripheral collisions below the Fermi energy ($15-20 \mathrm{MeV} /$ nucleon)
- Multinucleon transfer and deep inelastic collisions mostly dominate this energy regime
- A large acceptance spectrometer is essential \longrightarrow Efficient collection of the produced fragments

MAGNEX Spectrometer at INFN/LNS, Catania

$$
\begin{gathered}
\text { S800 Cyclotron Beam: } \\
{ }^{70} \mathrm{Zn}(15 \mathrm{MeV} / \text { nucleon }) \\
{ }^{64} \mathrm{Ni} \text { target } 1.18 \mathrm{mg} / \mathrm{cm}^{2} \\
\theta_{\text {MAGNEX }}=9^{\circ}
\end{gathered}
$$

The ejectiles passed through a 6 $\mu \mathrm{m}$ Mylar foil and were detected by the spectrometer's FPD

G.A. Souliotis, S. Koulouris, F. Cappuzzello, D. Carbone, A. Pakou et al., Nucl. Instrum. Methods A 1031 (2022) 166588
F. Cappuzzello, C. Agodi, D. Carbone and M. Cavallaro, Eur. Phys. J. A., 52:167 (2016)

MAGNEX Spectrometer

Focal Plane Detector (FPD)

- Gas-filled hybrid detector (isobutane of 40 mbar pressure)
- Wall of 60 large silicon detectors (7 Si detectors were used for this experiment)
- Proportional Drift Chamber spanning at six sequential planes
,
- Determination of horizontal and vertical coordinates
- Determination of the angles θ and φ of the ion's trajectory
- Energy loss of the reaction products in the gas and the residual energy of the fragments in the Si detectors

F. Cappuzzello, C. Agodi, D. Carbone and M. Cavallaro, Eur. Phys. J. A., 52:167 (2016)
D. Torresi, O. Sgouros, V. Soukeras et al., Nuclear Inst. and Methods in Physics Research, A 989 (2021) 164918

Z vs Q correlation

Reconstructed Z vs charge state q correlation of ejectiles from the reaction ${ }^{70} \mathrm{Zn} \quad(15 \mathrm{MeV} /$ nucleon $) \quad+\quad{ }^{64} \mathrm{Ni}$ corresponding to the same silicon detector.

Graphical contours are shown on each band corresponding to the atomic numbers Z (horizontal bands) and the ionic charge states q (vertical bands) of the ejectiles.

Mass Determination

$$
B \rho=\frac{\sqrt{m}}{Q} \sqrt{2 E t o t}
$$

Magnetic rigidity vs total energy correlation of ejectiles with $\mathrm{Z}=30$ and $\mathrm{Q}=28$ from the reaction ${ }^{70} \mathrm{Zn}(15 \mathrm{MeV} /$ nucleon $)+{ }^{64} \mathrm{Ni}$

Graphical contours: Isotopes of $\mathrm{Zn}^{28+}(\mathrm{A}=68-72)$

Reaction angle vs magnetic rigidity plot for $Z=30, Q=28, \quad A=70$
Obtain cross section (Z, A, theta, P/A)

Overview of PID Procedure

PID Procedure for particle identification of the reaction products

Identification of particles with specific Z and Q
Correlation of $\mathrm{B} \rho$ and $\mathrm{E}_{\text {tot }}$ for each Si detector
Separation of different isotopes of a specific element

Obtain cross section (Z, A, theta, P/A) | $\begin{array}{l}\text { Correlation of Bp and the reaction angle }\left(\theta_{\text {. }}\right) \text { for events of a } \\ \text { given } \mathrm{Z}, \mathrm{Q}, \text { Si detector and experimental run }\end{array}$ |
| :--- |

Theoretical Models

DIT - Deep Inelastic Transfer model (Phenomenological)

- Peripheral and semi-peripheral collisions
- Stochastic nucleon exchange
L. Tassan-Got and C. Stephan, Nucl. Phys. A, 524, 121 (1991)

CoMD - Constrained Molecular Dynamics (Microscopic)

- Nucleon: Gaussian wavepackets
- Pauli principle imposed via a phase-space constraint
M. Papa, A. Bonasera et al., Phys. Rev. C, 64, 024612, (2001)

Konstantina Palli, G.A. Souliotis et al., Eur. Phys. J. WoC, 252, 07002 (2021)
Teo Depastas, G.A. Souliotis, A. Bonasera et al, Eur. Phys. J. WoC, 252, 07003 (2021)

GEMINI - De-excitation

- Binary decay model
R. J. Charity et.al, Nucl. Phys. A, 483, 371 (1988), R. J. Charity, Phys. Rev. C 58, 1073 (1998)

Experimental Results

Mass Distributions

${ }^{70} \mathrm{Zn}(15 \mathrm{MeV} /$ nucleon $)+{ }^{64} \mathrm{Ni}$
Experimental Data (Closed Black Circles)
$\Delta \theta=4-15^{\circ}$
B ρ range: 1.260-1.425 Tm
Calculations
DIT/GEMINI (solid blue line, -_)
CoMD/GEMINI (solid red line,)
Green vertical line: --starting point of neutron pickup.

Calculated Mean Excitation Energy
Distributions of Primary Fragments

Calculations shown:
DIT/GEMINI (dotted blue line, CoMD/GEMINI (dotted red line,)

Vertical dashed green line (starting point of neutron pickup.

$\theta_{l a b}$ (degrees)

Angular distributions
of ejectiles from the reaction of ${ }^{70} \mathrm{Zn}$
$(15 \mathrm{MeV} /$ nucleon $)+{ }^{64} \mathrm{Ni}$.

General feature of the angular distributions:

Bell-shaped pattern

Peak near the grazing
angle $\left(\theta_{\mathrm{gr}}=6.5^{\circ}\right)$

Experimental data: (closed
black circles)
Calculations
DIT/GEMINI (dotted blue
line, - -)
CoMD/GEMINI (dotted red line,)

> Dashed green line $(--$
> Grazing Angle $\theta_{\mathrm{gr}}=6.5^{\circ}$
> Diff. Cross Section: do $/ \mathrm{d} \Omega$ $(\mathrm{mb} / \mathrm{msr})$

Experimental data: (closed black circles)
Calculations
DIT/GEMINI (dotted blue line, - - -)
CoMD/GEMINI (dotted red line,)
Vertical dashed green line (--) p / A of the projectile
$\Delta \theta=4-6^{\circ}$
Numbers above peaks: Total Excitation Energy (in MeV) from binary kinematics from the corresponding p / A values.

$$
E_{t o t}^{*}=Q_{g g}-Q
$$

Diff. Cross Section: $\mathrm{d}^{2} \sigma / \mathrm{d} \Omega \mathrm{d}(\mathrm{p} / \mathrm{A})$ [$\mathrm{mb} /(\mathrm{MeV} / \mathrm{c}) \mathrm{msr}]$

Momentum Distributions

General feature of the momentum per nucleon distributions

Quasielastic peak

Broad region (lower
values of P / A)

Multinucleon Transfer Reactions

Momentum per nucleon distributions
of ejectiles from nucleon pickup channels from the reaction of ${ }^{70} \mathrm{Zn}(15 \mathrm{MeV} /$ nucleon $)+{ }^{64} \mathrm{Ni}$.

[^0]

Momentum per nucleon distributions
of ejectiles from proton removal channels from the reaction of ${ }^{70} \mathrm{Zn}(15 \mathrm{MeV} /$ nucleon $)+{ }^{64} \mathrm{Ni}$.

Summary

- Detailed experimental study of ejectiles from the reaction with the MAGNEX spectrometer: Production of neutron-rich nuclides
- Obtained

Proton Removal
-1p
$-2 p$

- Trying to understand these complex distributions via comparisons with theoretical models \square
CoMD (further developments needed)
other direct reaction models (e.g.
FRESCO, Ptolemy)
G.A. Souliotis, S. Koulouris, F. Cappuzzello, D. Carbone, A. Pakou et al., Nucl. Instrum. Methods A 1031 (2022) 166588
S. Koulouris, G.A. Souliotis F. Cappuzzello, D. Carbone, A. Pakou et al., Phys. Rev. C 108, 044612 (2023)

[^0]: S. Koulouris, G.A. Souliotis F. Cappuzzello, D. Carbone, A. Pakou et al., Phys. Rev. C 108, 044612 (2023), doi: 10.1103/PhysRevC.108.044612

