

HELLENIC REPUBLIC National and Kapodistrian University of Athens EST. 1837

Multinucleon Transfer in ${}^{40}Ar + {}^{64}Ni$ at 15 MeV/nucleon Explored via Studies of Momentum Distributions

<u>K. Gkatzogias^{1,*}</u>, G. A. Souliotis¹, S. Koulouris¹, Ch. Giannitsa¹, M. Veselsky², S. J. Yennello³, A. Bonasera³

¹Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece ² Institute of Experimental and Applied Physics, Czech Technical University, Prague, Czech Republic ³Cyclotron Institute, Texas A&M University, College Station, Texas, USA

Email: gkakonst@chem.uoa.gr

Overview

- Introduction
- MARS Experimental Setup
- Computational Models
- Results and Comparisons
- Summary

Table of nuclides

- ~ 3300 short-lived (radioactive) nuclei synthesized to date
- large region of neutron-rich nuclei is still unexplored (~4000 nuclei)

MARS Experimental Setup

G. A. Souliotis et al., Nucl. Instr. Methods B, 266, 4692 (2008)

Computational Models

• DIT (Deep-Inelastic Transfer) model¹

- Phenomenological model
- Di-nuclear configuration of the system
- Stochastic exchange of nucleon through a "window" in the potential
- CoMD (Constrained Molecular Dynamics) model²
 - Microscopic model
 - Quantum molecular dynamics
 - Gaussian wavepackets Skyrme-type effective interaction
 - Compressibility: $K = 9\rho_0^2 \frac{\partial^2}{\partial \rho^2} \left(\frac{E}{A}\right)$
- GEMINI³
 - Deexitation code Binary-decay/"Evaporation"

¹L. Tassan-Got, C. Stephan, Nucl. Phys. A 524, 121 (1991)
²M. Papa, A. Bonasera et al., Phys. Rev. C 64, 024612 (2001)
³R. Charity et al., Nucl. Phys. A 483, 371 (1988)

Results – Mass Distributions

Experimental Data
DIT/GEMINI primaries
DIT/GEMINI totals
DIT/GEMINI filtered
COMD/GEMINI primaries
COMD/GEMINI totals
COMD/GEMINI filtered

Compressibility: K=254 MeV

Results – Momentum Distributions of Projectile Fragments

: Experimental Data
: DIT/GEMINI filtered
: CoMD/GEMINI filtered K=254

$$E_{tot}^* = Q_{gg} - Q$$

- : Experimental Data
- : DIT/GEMINI filtered
- : CoMD/GEMINI filtered K=254
- : CoMD/GEMINI filtered K=200
- : CoMD/GEMINI filtered K=308

$$E_{tot}^* = Q_{gg} - Q$$

- : Experimental Data
- : DIT/GEMINI filtered
- : CoMD/GEMINI filtered K=254
- : CoMD/GEMINI filtered K=200
- : CoMD/GEMINI filtered K=308

$$E_{tot}^* = Q_{gg} - Q$$

Summary

- We presented experimental data and theoretical calculations of mass distributions and momentum distributions of several channels of the reaction ⁴⁰Ar + ⁶⁴Ni at 15 MeV/nucleon.
- The experimental data were obtained with the MARS Spectrometer.
- They were compared with the two theoretical models, DIT and CoMD.
- Different compressibilities were tested. (K=254,200,308 MeV)
- We are in the state of further investigating the CoMD results and understand their tendencies.

Future Work

- We plan to increase the statistics of our CoMD calculations on channels that are of very low cross sections.
- Further experiments with other combinations of projectile and target may contribute to our systematics and to our understanding of nuclear reactions in this energy regime, below the Fermi energy (10-35 MeV).

Thank you!

Results – Mass Distributions

